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Abstract

We present a series of molecular dynamics simulations of single asperity contact and deformation that occurs as two rough

surfaces are brought together, loaded and then separated. We monitor the force between the two surfaces, the total potential energy,

the Q6 order parameter, the effective minimum contact radius and the conductance (using the modified Sharvin equation). The

deformation is observed using the local bond order parameter. During loading, the force–displacement relation exhibits a sawtooth

form, associated with repetitive generation and motion of partial dislocations and the concomitant creation and annihilation of

stacking fault pyramids. Unloading is characterized by an extended elastic deformation regime followed by plastic deformation of a

type that is distinct from that in loading. The qualitative features of the force, contact area and conductance versus displacement

plots are in excellent qualitative agreement with experimental observations. The simulations and experiments both show that

Johnson–Kendall–Roberts theory should not be applied to describe asperity loading, but is applicable to the case of unloading,

where the deformation is nearly elastic.

� 2004 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Many state-of-art microelectronic, photonic and

MEMS devices are based upon or created using small-

scale contacts. These include, for example, high fre-

quency, microscale electromechanical switches [1] and

nanopatterning of organic optoelectronic materials by

contact adhesion, cold welding, and lift-off [2]. The ini-

tial stages of contact occur between asperities of micro-

and/or nano-scopic dimensions. As a consequence, un-
derstanding the processes that occur at the atomic level

when two rough surfaces are bought into contact is

fundamentally important for a wide range of problems

including adhesion, contact formation, contact resis-
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tance, materials hardness, friction, wear, and fracture.

The centrality of single asperities in the fundamental
micromechanical response of contact between two

rough surfaces has long been recognized. Unfortunately,

contact behavior in the presence of adhesion and me-

chanical load remains poorly understood, despite the

long-standing research interest in this problem.

The micromechanical response and electronic trans-

port properties of single asperity contacts have received

significant experimental attention. A wide range of ex-
periments has shown that the conductance of small

contacts changes abruptly as a function of contact size.

The contact size effect has been studied through the

generation of wires via the extension of materials con-

tacts using tip-based methods [3–7], a break-junction

technique (BJ) [8], and by the strain-induced necking of

wires in contact [9,10]. In STM experiments, the tip is

brought into contact with the sample and the conduc-
tance is measured as the tip is retracted. In the BJ

technique, a metallic wire mounted on a substrate is
ll rights reserved.
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Fig. 1. The annealed asperity – rigid plate geometry.
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stretched to breaking as the substrate is bent. As the

substrate is repeatedly loaded and unloaded, contact is

broken and re-established, albeit in a highly irreversible

manner. Similar jumps in conductance have been ob-

served in the final stages of separation of macroscopic
metal bodies [9,10]. More recently, the conductance and

force have been measured simultaneously using a STM

supplemented by a force sensor [4–6]. These experiments

demonstrated a clear correlation between jumps in the

force and jumps in the conductance. This suggests that

the widely observed jumps in conductance are related to

highly localized deformation events.

Molecular dynamics (MD) simulations have been
performed to look at these electronic and mechanical

responses. The first set of simulations focused on the

mechanical deformation and conductance of nanowires

as they are stretched to breaking. The conductance was

measured based upon tight-binding [11,12], a free-elec-

tron [7,12], or modified Sharvin [10,13] models. Jumps in

conductance were found to be associated with atomic

rearrangements where sudden structural and cross-sec-
tional area changes occur, in agreement with recent

combined force and conductance measurements [4,5].

The second type of simulation focused primarily on the

mechanical response of an initially flat substrate during

indentation with a hard, nanoscale indenter [14–18]. The

force–displacement curves showed relatively abrupt

force drops associated with the generation of disloca-

tions [16,18]. Landman et al. [10] combined nano-in-
dentation studies with the calculation of conductance.

They found that the conductance jumps were correlated

with structural transformations involving elastic defor-

mation and yielding.

Although interesting, none of these studies address

the deformation and conductance changes that occur

when two arbitrary surfaces are brought into contact

and then separated. As discussed above, the early stages
of such contacts and the final stages of separations are

controlled by well-separated asperities. Unlike indenta-

tion using hard indenters, in which the deformation

occurs largely in the substrate, this type of deformation

occurs largely within the asperities. In asperity defor-

mation, dislocation can escape through the sides of the

asperities and the remaining deformation will be focused

toward the center of the asperity (rather than expanding
outward as in the case of nano-indentation). Many of

the earlier MD studies were performed under conditions

where the contact size is very small. In such cases, the

deformation was described as local atomic rearrange-

ments, but the type of rearrangements that occurred

could not be resolved. In the cases in which the contact

size was in excess of 1 nm, clear evidence of dislocation

motion was observed [10,13]. Therefore, the type of
deformation (or at least the ability to resolve it) depends

on asperity size. Recent experiments have used con-

ductance measurements to estimate typical single as-
perity contact radii and found them to be in the 1–8 nm

range [5]. Few contact simulations have been performed

on this scale and, of these, relatively little information

was extracted on the nature of dislocation dynamics.

In the present work, we report the results of molec-

ular dynamics simulations of single asperity contact

during loading and unloading at room temperature. We

focus on the mechanisms by which contact deformation
occurs and the relationship between contact conduc-

tance (and contact area) and the deformation. The

present simulations account for adhesion, elastic defor-

mation, dislocation generation and migration, the for-

mation of other types of defects and morphology

evolution. In order to study the elastic and plastic de-

formation of the asperities on a rough surface, we set-up

a model system, as shown in Fig. 1. For simplificity, we
consider a single deformable asperity on a deformable

substrate that interacts with a flat, rigid plate. We cal-

culate the conductance of the contact during loading

and unloading through the modified Sharvin model [12].

To our knowledge, this study represents the first dy-

namic, atomistic simulation of the elastic and plastic

deformation behavior of a single asperity and the cor-

responding evolution of the contact area and contact
conductance. The present simulation results reproduce a

large body of existing nano-contact experimental results,

including the stepwise variation of contact area and

conductance with displacement and the hysteresis in the

contact radius and contact resistance versus force

curves.
2. Simulation methods

We use the MD technique to simulate the motion of

atoms by numerically integrating Newton’s equations of

motion using the velocity-Verlet algorithm [19]. The

inter-atomic interactions are described using the em-

bedded-atom-method (EAM) [20,21] potential for Au

developed by Cai and Ye [22]. The molecular dynamics
simulations were performed constant number of atoms



Table 1

Values of q4ðiÞ, q6ðiÞ, and q8ðiÞ for different local configurations
Structure Neighbor q4ðiÞ q6ðiÞ q8ðiÞ

FCC 12 0.191 0.575 0.404

HCP 12 0.097 0.485 0.317

Decahedral 12 0.053 0.430 0.139

Icosahedral 12 0 0.663 0

BCC 14 0.036 0.511 0.429
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(N), pressure (P), and temperature (T) – i.e., in the NPT

ensemble.

The MD simulation cell is composed of two parts: a

rigid plate and a flat deformable substrate containing 14

face centered cubic (0 0 2) planes of dynamic atoms upon
which an asperity sits. Periodic boundary conditions are

employed in the [1 0 0] and [0 1 0] directions and the

simulation cell edge length in these is �6.1 nm. In order

to obtain a realistic asperity configuration, we initially

construct a cubic 4 nm · 4 nm · 4 nm asperity on the

surface containing 1280 atoms followed by two thermal

annealing cycles. In the first cycle, we raise the temper-

ature from 0 to 700 K in 10 ps, anneal at 700 K for 1 ns
and cool to 0 K in 10 ps. Next, we raise the temperature

from 0 to 300 K in 10 pc and anneal the sample for 5 ns

(all of the simulations described below are performed at

300 K). The atomic configuration of the system fol-

lowing this thermal treatment is shown in Fig. 1. This is

the state of the asperity at the beginning of the contact

simulations described below. The total number of atoms

in the system is 8480 and the average radius of the as-
perity is approximately 3 nm.

In the contact simulations, the plate is displaced in

the [0 0 1] direction, towards the asperity and substrate.

The atoms in the plate are fixed, except for the rigid

translation of the plate. The initial separation between

the plate and the top of the asperity is approximately 0.8

nm. During the contact simulations, we decrease or in-

crease the separation between the substrate and rigid
plate by 0.005 �A every 0.5 ps (i.e., 100 MD steps) such

that the rate of loading and unloading is 1 m/s. Since

this is a displacement controlled contact experiment

using a perfectly rigid testing machine, the overall dis-

placement is prescribed and the Z-component of the

force on the plate is calculated during the simulation.

The evolution of the defect structure is monitored using

a local atomic structure analysis and the electrical con-
ductance is calculated from the asperity-plate contact

size throughout the simulation.

2.1. Local atomic structure analysis

During the loading and unloading cycles imposed by

the displacement of the rigid plate, the asperity and

substrate deform – generating a variety of point and line
defects. Since we will describe the deformation behavior

in terms of the generation and movement of these de-

fects, proper identification of the defects is important.

The nature of the defects can be determined through the

local arrangement of atoms. For example, a stacking

fault generated by the slip of a partial dislocation along

a {1 1 1} plane can be recognized as a pair of hexagonal

close packed (HCP) atomic layers within the face cen-
tered cubic (FCC) matrix. A dislocation can be recog-

nized as a pattern of atoms containing less than 12

nearest neighbors.
During the MD simulations, we obtain the positions

and momenta of all the atoms in the system at each time

step, and therefore all possible descriptions of the evo-

lution of the atomic structure are, in-principle, available.

In this work, we use the bond-order parameter method
to identify the local structure around each atom as well

as the global structure of the system [23]. The local

structure around atom i is determined by the second-

order invariant local order parameter [23]

qlðiÞ ¼
4p

2lþ 1

Xl
m¼�l

qlmðiÞj j2
" #1=2

; ð1Þ

where qlmðiÞ ¼ ½
PNnbðiÞ

j¼1 Ylmð~rijÞ�=NnbðiÞ, where Ylm are

spherical harmonics, ~rij is the unit vector connecting

atom i with its neighboring atoms j that are within a

given radius rcut ¼ 0:35 nm (i.e., between first and sec-

ond neighbors in the zero-pressure FCC lattice) from i,
and NnbðiÞ is the number of neighbors within rcut of atom
i. The first non-zero value of qlðiÞ occurs at l ¼ 4 for

atoms with cubic local symmetry. The values of q4ðiÞ,
q6ðiÞ, and q8ðiÞ are listed in Table 1 for different local

environments: FCC, HCP, BCC, icosahedral, and

decahedral. Based upon the values of these parameters,

we can distinguish between the perfect crystal, stacking

faults, dislocations, interstitials, and vacancies.

2.2. Contact radius and conductance

Based on the atomic configurations generated by the

MD simulations, we determine the effective minimum

asperity radius during loading and unloading. To cal-

culate the effective minimum contact radius, we identify

the (0 0 1) atomic plane in the asperity with the smallest
cross-section area by projecting the atomic coordinates

onto the X–Y -plane, and calculate the effective mini-

mum contact radius amin using the expression (designed

to yield the correct radius for a circular geometry) [24]

a2min

2
¼
P

i xi � xcð Þ2 þ yi � ycð Þ2
h i

N
: ð2Þ

Here, the sum is over all the atoms in the (0 0 1) atomic

plane with the smallest cross-sectional area, N is the

number of these atoms, xc and yc are the X and Y co-

ordinates of the center of mass of this group of atoms.

The conductance of a macroscopic contact is
proportional to the contact radius and inversely



-40

-30

-20

-10

0

10

20

30

40

50

F z (
nN

)

-3.732

-3.730

-3.728

-3.726

-3.724

-3.722

-3.720

-3.718

-3.716

-3.714

Q
6 

o
rd

er
 p

ar
am

et
er

T
ot

al
 e

ne
rg

y 
(e

V
/a

to
m

)

0.44

0.46

0.48

0.50

0.52

0.54

0.56

0.0

0.5

1.0

1.5

2.0

a m
in
 (n

m
)

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

0

20

40

60

80

100

120

140

C
on

du
ct

an
ce

 (
2e

2 /h
)

Displacement (nm)

A

B

C

D

E

F

G G

H

H

H
I

K

L

J

S

(a)

(b)

(c)

(d)

Fig. 2. The (a) calculated force, FZ , (b) total potential energy (solid

line) and Q6 order parameter (dashed line), (c) effective minimum

contact radius, amin, and (d) conductance, GS, as a function of the

displacement (measured from the initial separation between the sub-

strate surface and the rigid plate) during loading. The letters label
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proportional to the resistivity of the material [25].

However, if the dimensions of the contact are smaller

than the mean free path of the electrons (of the order of

40 nm in Au at room temperature and much larger at

lower temperatures) the conductance is proportional to
the contact area, as described by Sharvin [25]. Using the

corrected Sharvin equation [12,26], the conductance GS

of a contact of small radius a is given by

GS ¼
2e2

h
Ap

k2F

 
� P
2kF

!
; ð3Þ

where e is the electron charge, h is Planck’s constant, kF
is the Fermi wavelength (for Au, kF ¼ 5:19 �A), A is the

contact area and P is the perimeter of the contact. Al-

though Eq. (3) provides a reasonably accurate estimate

of the contact conductance, it is difficult to apply since

the contact is never perfectly circular in the MD simu-

lations (the perimeter and contact area are not easily

identified). To work around this difficulty, we can recast

Eq. (3) in terms of the minimum effective contact radius
(obtained from Eq. (2)) using the calibrated form of the

contact conductance proposed in [12]. The calibrated

contact conductance is

GS ¼
2e2

h
kFaminð Þ2

5:8
; ð4Þ

where kF is the Fermi wave vector and amin is the effec-

tive minimal contact radius corresponding to that of
Eq. (2). Eq. (4) was obtained [12] through fitting tight-

binding and exact free electron calculation data on the

conductance of an atomic-scale metallic contact. The

calibrated contact conductance was shown to be insen-

sitive to the shape of the contact cross-section [12].
displacements discussed in the text and the vertical lines are at the

approximate locations of force drops and are guides for the eye. Each

value of FZ is an average over 4 ps, corresponding to a displacement of

0.04 �A, whereas the data for Q6, amin and GS was calculated from a

single atomic configuration each 0.4 �A.
3. Contact and loading

The rigid plate, initially 0.8 nm above the top of the

asperity, is slowly advanced toward the substrate at a

fixed rate during loading. Fig. 2 shows the normal force

on the rigid plate, the averaged total potential energy

per atom, the average or global order parameter

Q6 ¼ 1
N

PN
i¼1 q6ðiÞ, the effective minimum contact radius

amin, and the calibrated contact conductance GS versus
displacement. The zero of displacement corresponds to

the initial separation between the rigid plate and the

asperity. The sign of the force is negative when the rigid

plate is attracted toward the substrate.

The force varies in a non-monotonic fashion with the

displacement, exhibiting several force drops, which

corresponds to some type of mechanical instability (see

below). The initial force drop (labeled S) corresponds to
the asperity jumping into contact with the rigid plate.

The magnitude of the force drops alternate between

small and large: small drops (B–C, F–G, J–K in
Fig. 2(a)) correspond to the nucleation of partial dislo-

cations on four {1 1 1} different slip planes and the large

drops (D–E, H–I) to the annihilation of the partial

dislocations and stacking faults formed during the pre-

ceding small force drops. This will be discussed in more

detail below. It is also possible to detect structural

changes during deformation using the Q6 order pa-

rameter (Fig. 2(b)). Q6 order parameter drops abruptly
at the displacement where the small force drops are

observed (Fig. 2(a)). This can be traced to the generation

of stacking faults (layers of HCP) generated by the

motion of the first set of partial dislocations. These

drops are followed by rapid increases at the same dis-

placements where the large force drops were observed in

Fig. 2(a). These are associated with the annihilation of

the stacking faults, which restores the material to its
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Fig. 3. (a) Atomic configurations of thin plates (three {1 1 0} atomic

planes thick) cut from the simulation cell and through the center of the

asperity. The images on the left and right correspond to ½�110� and
½�1�10� thin plate orientations, respectively. The labels F, G, and G0 refer
to Fig. 2(a). The atoms are colored according to their local structure as

determined by the local bond order parameter: FCC order – gray,

HCP order – black, and atoms with less than 12 nearest neighbors –

white. (b) Atomic configuration seen from the [0 0 1] direction looking

from the substrate toward the rigid plate, where all atoms with local

FCC order were removed for clarity. This case corresponds to the

displacement labeled G0 in Fig. 2(a).
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stacking fault-free state and the original value of Q6. It

is worth noting that total potential energy of the system

increases slightly at those displacements corresponding

to the small force drops, but remarkably shows a strong

decrease at the displacements corresponding to large
force drops. This means that the stacking faults struc-

ture generated at the small force drops raise the total

potential energy of the solid. However, the thermody-

namic driving force for structural change is the total

energy plus the work done by the loading. This indeed

must decrease when the first set of partial dislocations

forms and propagate. If the applied load is removed,

however, these partial dislocations will run out of the
asperity. On the other hand, the large total potential

energy drops occurs at the displacements where large

force drops are observed, suggesting that the annihila-

tion of the partial dislocations and stacking faults is an

irreversible process. Finally, we note that both the small

and large force drops correlate with the disappearance

of a single (0 0 2) plane from the asperity.

Figs. 2(c) and (d) show that both the contact radius
and conductance increase with increasing displacement

in a stepwise manner. The constancy of the contact ra-

dius and conductance between force drops suggest that

these stages of the deformation are predominantly

elastic and the abrupt changes observed at force drops

correspond to plastic deformation that changes the as-

perity radius. This is consistent with earlier experiments

[4–10] and MD simulations [10–13] that suggested that
the observed abrupt changes in contact conductance are

the result of some type of mechanical instability.

At large separation, FZ � 0 because the atomic in-

teractions are short-ranged. As the separation between

plate and asperity decreases, the two surfaces begin to

weakly attract one another (from a displacement from

�0.3 to �0.4 nm in Fig. 2(a)). When the displacement is

increased only slightly more (beyond �0.4 nm), the force
becomes strongly negative. This corresponds to the

widely observed jump-to-contact instability. While

jump-to-contact could occur purely elastically, obser-

vation of the surface of the asperity shows that some

change in asperity shape occurs at this point [27]. These

change are, however, limited to within a few �As of the

point of nearest asperity-rigid plate contact (this pro-

duces the drop in the Q6 order parameter at this dis-
placement). The jump-to-contact produces a jump in the

conductance from zero (neglecting tunneling) to 20 in

units of 2e2=h, indicating that a connective neck between

asperity and plate has been established. This conduc-

tance jump is very nearly equal to that observed in ex-

periment (i.e., a jump of between 10 and 30 in the same

units) [6].

We now address the issue of the microscopic origin of
the small force drops observed in Fig. 2(a) (B–C, F–G,

and J–K). Associated with the abrupt drop in the force

(by less than 10 nN), there is a corresponding rapid drop
in the Q6 order parameter and a slight increase in the

total energy at very nearly the same displacement (as

described above). To illustrate the microscopic, struc-

tural origin of these rapid changes, we examine the

atomic structure of the system (Fig. 3) at the displace-
ments labeled F, G and G0 in Fig. 2(a). The left and right

columns of images in Fig. 3(a) show the atomic config-

urations of two slabs of atoms cut from the center of the

model with ½�110� and ½�1�10� normals, respectively. Each

slab nearly bisects the asperity and contains three ad-

jacent {1 1 0} planes of atoms. Fig. 3(b) shows the

atomic structure corresponding to the point G0 in the

½00�1� direction, where all atoms that exhibit a local FCC
environment were removed from the image for the sake

of clarity. The top row of images in Fig. 3(a), corre-

sponding to the displacement F (see Fig. 2(a)), show that

there are no dislocations in the system at this loading.
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As the load is increased, partial dislocations nucleate on

four different {1 1 1} planes (see the figures corre-

sponding to G and G0). The Burgers vector of the dis-

location on the (1 1 1) plane is a0=6½�1�12�, a0=6½�112� on
ð1�11Þ, a0=6½1�12� on ð�111Þ, and a0=6½112� on ð�1�11Þ.
Partial dislocations on crossing slip planes meet and

generate stair-rod dislocations according to the reac-

tions:

a0=6½�1�12� þ a0=6½�112� ! a0=3½�102�

a0=6½�1�12� þ a0=6½1�12� ! a0=3½0�12�

a0=6½112� þ a0=6½�112� ! a0=3½012�

a0=6½112� þ a0=6½1�12� ! a0=3½102�

The black atoms in Fig. 3(b) are at stacking faults. The

stacking faults planes meet to create a pyramid-like

shape (hereafter, referred to as a stacking fault pyramid

(SFP)) that is delimited by lines of white atoms that

correspond to stair-rod dislocations. These SFP remains

stable as the load is increased. However, if the load is

removed, the SFP disappears. The stair-rods formed by

the reaction of the partial dislocations are unstable be-
cause their line tension is larger than the sum of those of

the reacting two partial dislocations in the absence of an

external stress. The stair-rods form as a result of the

motion of the partials that are driven by the applied

loading. This explains why the total potential energy of

the system slightly increases during the formation of the

SFP. This further explains why these structures have not

been observed experimentally (removal of the load al-
lows the stair-rod dislocations to retract). The SFP is a

unique feature of the deformation of an asperity on

{0 0 1} surfaces and is a result of the orientation of the

available slip planes and the focusing of the deformation

(i.e., convergence of the slip) within the asperity. Ex-

amination of Fig. 3(a) demonstrates that the formation

of the SFP also correspond to the disappearance of a

single (0 0 2) atomic plane (cf. the images corresponding
to F and G0 in Fig. 3(a)).

We now examine the mechanisms underlying the

large force drops at D–E and H–I in Fig. 2(a), which

occur following the small force drops (B–C and F–G).

Normally, one would expect that further loading would

generate more defects and more dislocations after the

formation of SFP at the small force drops. To examine

this issue, we plot the atomic configurations (see Fig. 4)
corresponding to the displacements H, H0, H00, and I (in

Fig. 2(a)). The viewing angles for these figures are the

same as for Fig. 3(a). The top row of images in Fig. 4

(displacement H) shows a single SFP akin to that seen in

the third row of images in Fig. 3(a). Upon further

loading, new partial dislocations are generated near the

corners of the asperity/rigid plate contact (displacement

H0) which travel along the {1 1 1} stacking faults left
behind by the earlier set of partial dislocations. The new

partials have Burgers vectors a0=6½1�21� on the (1 1 1)

plane and with a0=6½�121� on the ð�1�11Þ plane at dis-

placement H0, as seen in the second row of images in
Fig. 4. These two dislocations destroy the stacking faults

left behind by the earlier partials (this process is not

complete at displacement H0). The new partials and

those generated earlier then react to produce perfect

dislocations with Burgers vectors a0=2½0�11� and

a0=2½011�. These two dislocations then react to form a

perfect dislocation with Burgers vector a0½001� (see the

fivefold symmetry structure in the second row in Fig. 4).
At this time, the remaining two partial dislocations on

the ð�111Þ and ð1�11Þ planes (seen in the right image in

the second row of Fig. 4) glide to the surface and out of

the solid (see the right image in the third row of Fig. 4 at

displacement H00). Next, the a0½001� dislocation glides

along the (0 0 1) plane away from the region of high

compression and dissociates into two sets of partials on

two different slip planes, namely: a0=6½�1�21� þ a0=6½1�12�
on the ð�111Þ plane and a0=6½121� þ a0=6½�112� on

theð1�11Þ plane. This can be seen on the right-hand side

(three planes below the substrate surface) of the left

image in the third row (displacement H00) of Fig. 4.

These partial dislocations then glide to the surface, ef-

fectively decreasing the height of the asperity by a single

(0 0 2) plane of atoms (note the slip step in the box on

the left-hand side of the left image in Fig. 4 at dis-
placement I). When the a0½001� dislocation glides to the

right (left image at displacement H00), a new set of partial
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dislocations form on the (1 1 1) plane near the corner of

the asperity/rigid plate contact and a process akin to

that described above occurs again.

Although the detailed dislocation mechanism in-

volved in the large force drops are complex, a few salient
features can be extracted: (1) partial dislocations form at

the corner where the asperity and rigid plate meet, travel

along and destroy the existing stacking fault and react

with the partial formed earlier to create a perfect dis-

location, (2) this dislocation undergoes several reactions,

travels away from the asperity and then out the free

surface, leaving a slip step and a dislocation free mate-

rial, and (3) the generation and escape of the disloca-
tions reduce the height of the asperity. The present

results also show the detailed dislocation mechanism by

which material from the asperity is transferred to nearby

regions on the substrate surface. Similar observations

have been made for nano-indentation [17].
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Fig. 5. The (a) calculated force, FZ , (b) total potential energy, (c) ef-
fective minimum contact radius, amin, and (d) conductance, GS, as a

function of the displacement (measured from the initial separation

between the substrate surface and the rigid plate) during unloading and

loading. The dashed curves in (a) indicate the force displacement re-

lation corresponding to a force-controlled experiment, as discussed in

the text.
4. Unloading

Following loading to a displacement of 1.96 nm

(displacement L in Fig. 2(a)), we begin reversing the

displacement (i.e., retracting the rigid plate from the

substrate/asperity). Fig. 5 shows the force, total poten-

tial energy, effective minimum contact radius and con-

ductance versus the displacement for unloading. The

atomic configuration corresponding to the displacement
where the loading is reversed is shown in Fig. 6(a). At

this displacement, a well-formed SFP extends into the

substrate. In the early stages of unloading, the force and

total potential energy decrease as the rigid plate is re-

tracted. This is predominantly the elastic response to

decreasing the load. Between displacements A and B in

Fig. 5, the first force jump occurs. This corresponds to

the annihilation of the SFP generated during loading.
As described above, the SFP is stable only in the pres-

ence of the applied load. When that load is removed, the

dislocation line tension leads to the dissociation of the

stair rod dislocations and egress of the partial disloca-

tions that constitute the edges of the SFP. As the rigid

plate continues to be retracted, the sign of the force

changes from compressive (positive) to tensile (nega-

tive). Further rigid plate retraction leads to another
force jump between displacements C and E. As we will

show below, this is associated with plastic deformation/

dislocation slip albeit very different dislocation slip than

occurred in loading. The maximum tensile force (cor-

responding to the pull-off force in a load-controlled

experiment) appears to occur at displacement F in

Fig. 5(a), however, if the data were not averaged, the

true maximum tensile force would be observed at dis-
placement C. With further retraction of the rigid plate,

many new dislocations are generated and the defect

density in the system continuously increases. The dis-
placement at zero force corresponds to the minimum in

the total potential energy of the system. The total po-

tential energy is very nearly a quadratic function of the

displacement near this point – further supporting the

notion that between displacements B and C, the defor-

mation is linear elastic (in fact it is elastic from O to C

with the exception of the jump at A). The difference in

the displacement between that of the initial jump-to-
contact and that corresponding to the minimum in the

total potential energy corresponds to the plastic dis-

placement that occurred on loading (this includes the

reversible dislocation motion that occurred at point A).

Therefore, the plastic deformation that occurred on

loading irreversibly decreased the height of the asperity

by �1.1 nm or �5 (0 0 2) atomic planes (which is con-

firmed by comparing the atomic configurations of the
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Fig. 7. Atomic configurations showing the generation of partial dis-

locations (the extrinsic stacking faults) during unloading. The config-

urations correspond to the displacements labeled C, D, and E in

Fig. 5(a).

Fig. 6. (a) Atomic configuration at the displacement from which un-

loading is begun (displacement O in Fig. 5(a)). (b) Atomic configura-

tions viewed from the [0 0 1] direction (looking from the substrate

towards the rigid plate). The configurations correspond to the dis-

placements labeled O, A, and B in Fig. 5(a). Atoms with local FCC

order were removed for clarity, as per Fig. 3(b).
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asperity prior to loading and at the minimum elastic

energy on unloading).

As in loading, the effective minimum contact radius

and conductance vary with displacement in a step-wise

manner during unloading (see Fig. 5(c) and (d)). The

first step seen upon unloading (displacement A in

Fig. 5(a)) corresponds to the annihilation of the SFP

that was formed during loading. Following this drop,
further decrease in the displacement yields a slow, nearly

linear decrease in the contact radius and conductance

(displacements from 1.6 to 0.6 nm). The small, finite size

of this slope is indicative of the elastic deformation of

the asperity and the existence of a non-zero Poisson

ratio. This small slope plateau spans several plastic

events, implying those events do not modify the cross-

section of the asperity. Indeed, in the long plateau ob-
served in the contact radius and conductance versus

displacement, the plastic deformation occurs in the

substrate or near where the substrate meets the asperity

(see Fig. 7), leaving the minimum cross-sectional area of

the asperity nearly unaltered. However, further rigid

plate retraction leads to plastic deformation that extends

into the asperity, thereby decreasing the effective mini-

mum contact radius and the conductance (e.g., note the
three drops that occur between 0.6 and 0 nm).

We now examine the mechanism by which the SFP

generated during loading is annihilated during unload-

ing (between displacements A and B in Fig. 5(a)).
Fig. 6(b) shows the atomic configurations corresponding

to displacements O, A, and B. These figures show that

the partial dislocations that met at the apex of the

pyramid move toward the free surface, thereby unzip-
ping the stair-rod dislocations that form the edges of the

SFP. In the image corresponding to B in Fig. 6(b), most

of the partial dislocations have escaped out the surface

and only a small segment remains near one edge of the

asperity. The escape of these partial dislocations in-

creases the height of the asperity by a single (0 0 2)

atomic plane.

Following the long elastic retraction of the rigid plate
from displacements B to C (Fig. 5(a)), another plastic

deformation event occurs. This event is illustrated in

Fig. 7, where we show the atomic configurations corre-

sponding to displacements C, D, and E in Fig. 5(a). At

displacement C, the asperity and substrate are disloca-

tion-free. Further rigid plate retraction leads to the

formation of a set of stacking faults that are very dif-

ferent from those formed during loading as seen in im-
ages (Fig. 7) corresponding to displacements D and E in

Fig. 5(a). The stacking faults are composed of two HCP

layers separated by an FCC layer. This is an extrinsic



Fig. 9. Atomic configuration during unloading immediately prior to

contact rupture.
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stacking fault [28]. Slip first occurs on a (1 1 1) slip plane

(image D in Fig. 7), followed by slip on the ð�1�11Þ slip

plane (image E in Fig. 7). Note, unlike in the loading

case, all four (1 1 1) slip planes are never simultaneously

active. The microscopic mechanism of extrinsic stacking
fault formation is as follows. During the retraction of

the rigid plate in the [0 0 1] direction, the maximum re-

solved shear stress (MRSS) on the (1 1 1) plane is in the

½11�2� direction. Fig. 8(a) shows two adjacent (1 1 1)

planes and the direction of the MRSS. During unload-

ing, the lower layer would slip straight down relative to

the upper layer in the geometry of this figure. If this

happens, the dark atoms would lie directly beneath the
white atoms, creating an extremely high energy stacking

fault. This is shown in Fig. 8(b) using the traditional

(1 1 1) plane stacking sequence notation for FCC metals.

The formation of this stacking fault corresponds to the

first column in Fig. 8(b) transforming to the second.

Since the energy of this stacking fault is so high, it is

unstable and decays to that shown in the third column in

Fig. 8(b). The circle A and C layers in Fig. 8(b) have the
classic alternating layer stacking of an HCP structure,

while the intervening B layer retains the ABC stacking

of an FCC structure. This is an extrinsic stacking fault.

Note that during loading, the black atoms would slip up

(rather than down) in Fig. 8(a). This would create the

stable, low energy intrinsic stacking fault. This explains

why intrinsic stacking faults are observed during loading

and extrinsic stacking faults form during unloading. We
can represent the formation of the extrinsic stacking

fault that forms on unloading in terms of a partial dis-

location reaction

a0=6½11�2�1 ! a0=6½2�1�1�1 þ a0=6½�12�1�2 ð5Þ
where the superscripts 1 and 2 indicate that these dis-

locations are on adjacent, parallel (1 1 1) planes. These
two partial dislocations move together.
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Fig. 8. Schematic illustration of the formation of an extrinsic stacking

fault during unloading. (a) Schematic diagram of two atomic layers sen

from [1 1 1] direction. ½11�2� is the maximum resolved shear stress di-

rection during unloading. (b) Changes in the atomic layer stacking

sequence during the formation of an extrinsic stacking fault (see [28]).

The circles indicate local HCP order.
Further unloading beyond displacement E in

Fig. 5(a) generates increasing densities of dislocations

both in the substrate and in the asperity, as shown in

Fig. 9. This is quite different than observed during

loading where further deformation repeatedly forms and

annihilates dislocations such that the dislocation density

oscillates.

Perhaps more interesting is that when the plate and
substrate separate, a significant fraction of the atoms

that were in the substrate have been transferred to the

plate. This is further demonstration that asperity con-

tact is an irreversible process. When the plate and sub-

strate separate, a thin neck is formed between the

transferred material and the substrate that eventually

breaks. We note that when the rigid plate is retracted at

a very high rate, this neck can be greatly extended,
producing a wire of atomic radius between the plate and

substrate. The formation of such wires was reported

earlier in MD simulations of elongation of nanowire

[13]. This suggests the degree to which wire formation

occurs is very sensitive to the deformation rate.
5. Discussion

Agrait et al. [4,5] performed a series of experiments in

which they brought a gold tip in contact with a nomi-

nally flat gold surface while simultaneously measuring

the contact force and contact conductance. A repre-

sentative set of experimental loading and unloading re-

sults at 300 K in ambient conditions is shown in Fig. 10

and the inset shows experimental set-up. These results
show the presence of abrupt changes in both the contact

force and contact conductance both on loading and

unloading. In order to compare our simulation results

with those obtained experimentally, we must account for

the difference between the simulation and experimental



Fig. 10. Measured force and conductance versus displacement during a

cycle of loading and unloading a Au contact at 300 K from [5]. The

force is measured with a cantilever beam of effective spring constant of

35 N/m in the experimental geometry shown in the inset. This plot is

reproduced from [5] with the permission of the authors.
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geometry. More specifically, the experimental system

used a very low stiffness test configuration, while the

simulated contact study was performed using a very
Fig. 11. The force versus displacement and conductance displacement curves

small stiffness of the experimental cantilever geometry, as discussed in the t

convert between the effective displacements in the rigid ðZRÞ and compliant
high stiffness geometry. In particular, in the experiment

[5], the force was applied through the deflection of

cantilever beams with spring constants of 25 and

35 N/m. Such low spring constants were necessary in

order to create measurable displacements for forces of
order 1 nN. We can think of the experiment as pushing

or pulling a spring attached to the rigid plate that is in

contact with the tip (see the inset in Fig. 11(b)). The

spring and the rigid plate correspond to the cantilever

beam in the experiment. In order to transform the

simulation results such that they are comparable with

the experiment, we adopt the method proposed in [13].

The displacement of the upper end of the compliant
spring and the displacement of the rigid plate are de-

noted ZC and ZR, respectively. ZC is controlled in the

experiment and FZ is measured as the force created by

the spring. This force is Fz ¼ kðZC � ZRÞ, where k is the

spring constant. In order to transform the simulation

results to the experimental situation, we must relate

FZðZRÞ determined from the rigid test geometry simu-

lations to FZðZCÞ, corresponding to the compliant test
geometry experiments. To obtain this mapping, we

specify a value of ZR, determine FZðZRÞ from the simu-

lation, and then calculate ZC from the spring equation,

i.e., ZC ¼ ZR þ FzðZRÞ=k.
The force and tip conductance simulation results are

replotted in Fig. 11(b) following the transformation

from ZR to ZC coordinates for the case of a spring

constant of k¼ 35 N/m. The new force–displacement
plot can be characterized as a series of finite slope re-

gions, separated by abrupt force drops (rises) in com-
obtained (a) from the simulation and (b) as modified to account for the

ext. The inset shows a schematic illustration of the approach used to

ðZCÞ test geometries.
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pression (tension). The finite slope regions correspond to

periods of elastic deformation. The abrupt force drops

can be understood as follows: when the asperity un-

dergoes plastic deformation such that its height de-

creases, the spring extends and hence the force drops.
Since the plastic deformation is very fast relative to the

rate at which the top of the spring is moved, the force

drops in Fig. 11(b) appear as abrupt. More precisely, a

vertical drop in FZðZCÞ (i.e., a mechanical instability)

will occur when the slope of �FZðZRÞ is smaller than the

spring constant, k.

We can now compare the simulation and experi-

mental results on an equal basis. Like the experiment
(Fig. 10(a)), the transformed simulated force–displace-

ment curve (top image in Fig. 11(b)) shows finite slope

regions separated by vertical force drops. In experiment

and simulation, the unloading curves are characterized

by an initially long elastic (constant slope) region, fol-

lowed by a series of force jumps. The maximum tensile

force in the simulation was approximately )30 nN,

while the experiment shows a maximum tensile force of
approximately )25 nN. While this excellent agreement is

somewhat fortuitous, it is simply an indication that the

local flow stress and contact area in the simulation and

experiment are very similar. Both the experiments and

simulation contact conductance plots show a combina-

tion of nearly vertical and horizontal segments. In both
Fig. 12. (a) Measured dimensionless contact radius versus dimensionless app

radius versus force curve from the simulations (in the force-controlled geomet

lines in (a) and (b) represent the prediction of Johnson–Kendall–Roberts th

contact resistance as a function of actuation voltage in a MEMS switch repro

to the force on the contact. (d) Simulated contact resistance versus force cur

correspond to loading and unloading, respectively.
cases, the drops in the conductance are well correlated

with sharp drops/jumps in the force. The conductance is

larger on unloading than during loading at the same

displacement (simulation and experiment), indicative of

the widening of the contact area during loading. The
magnitude of the conductance is approximately two

times larger in the simulation than in the experiment.

This quantitative discrepancy may be the result of ap-

proximations inherent in the modified Sharvin equation

or the existence of more scattering sites in the experi-

ment than are accounted for in this equation. In fact, the

simulation show that dislocations and stacking faults

are generated in and around the asperity during both
loading and unloading – a feature not accounted for in

the analytical conductance equation.

The existence of hysteresis in contact radius versus

force and contact resistance versus force (or corre-

sponding applied voltage between the cantilever and the

counter electrode in a MEMS switch) curves has been

reported in experiments in which rough surfaces are

pushed together and then pulled apart [29,30]. Fig. 12(a)
shows the variation of the contact radius as a function

of applied load in an experimental study of contact be-

tween a flat mica surface and a rough Au surface [29]. In

this figure, the filled and open circles represent experi-

mental data obtained upon loading and unloading, re-

spectively, and the solid lines are theoretical curves
lied load curve reproduced from [29], with permission. (b) The contact

ry, as discussed in the text). The dash lines guides for the eye. The solid

eory [31] with different values of the work of adhesion. (c) Measured

duced from [30], with permission. The actuation voltage is proportional

ve (force-controlled geometry). In all cases, the filled and open circles
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calculated using the classical theory of Johnson, Kendall

and Roberts (i.e., JKR theory) [31] with different values

for the ideal interfacial works of adhesion, W. JKR

theory predicts that the contact radius a varies with

asperity radius R, elastic constant K, and applied load P

as [29,31]

a3 ¼ R
K

P
�

þ 3pRW þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6pRWP þ 3pRWð Þ2

q �
: ð6Þ

Comparison of the experimental and theoretical results

in loading demonstrates that JKR theory does not even
provide a qualitative description of the compressive

loading experimental data. On the other hand, the sep-

aration data closely matches the JKR prediction with a

constant work of adhesion. Fig. 12(c) shows the contact

resistance (inverse of the conductance) versus the ap-

plied actuation voltage curve [30] in a MEMS switch (a

detailed description of the MEMS switch is in [32]),

where the applied force is proportional to the actuation
voltage. The resistance drops suddenly at a fixed actu-

ation voltage (i.e., when the two surface are brought into

contact) and then slowly decreases with further increase

in the voltage. When the voltage decreases, the contact

resistance increases very slowly before contact is lost at

an actuation voltage lower than that required to bring

the surfaces initially into contact. The decrease in con-

tact resistance with applied voltage is attributable to
increasing contact area as the compressive force is in-

creased. The contact radius and resistance plots (Figs.

12(a) and (c)) are related through the modified Sharvin

equation that suggests that the contact resistance is in-

versely proportional to the square of the contact radius.

Before comparing the contact radius and resistance

versus applied load results from our MD simulations

with the experimental results in Fig. 12(a) and (c), we
must convert the results of our displacement controlled

simulations to the force controlled case employed in the

experiments [29,30]. This can be done simply. Since in

the force-controlled case, the force can only increase and

never decrease (during loading), we traverse the force–

displacement curve obtained from the displacement

controlled simulation (e.g., Fig. 2(a)) and anytime the

force decreases, we simply allow the displacement to
jump to the next point on the curve with the same value

of the force. This ensures that the force–displacement

curve in loading is monotonically increasing. The force

controlled force–displacement curve is shown as the

dashed lines in Fig. 5(a). The jump-to-contact and those

corresponding to plastic deformation appear as jumps in

displacement. The same procedure can be applied to the

unloading case except that the jumps in displacement are
in the opposite direction. This procedure leads to a

much smoother force–displacement curve than that

shown in the displacement-controlled case, albeit with

jumps in displacement (Fig. 5(a)). On unloading, there

will be a jump to infinite separation when the applied
tensile force exceeds the maximum tensile force in the

displacement-controlled plot (point C or F in Fig. 5(a)).

This jump to infinity occurs at the end of the reversible

deformation region on unloading, as discussed above.

Figs. 12(b) and (d) show the contact radius versus
force and contact resistance versus force curves corre-

sponding to the force-controlled conditions, as de-

scribed in the previous paragraph. There is clearly

hysteresis on loading and unloading, indicative of non-

elastic deformation. The solid lines in Fig. 12(b) are the

predictions of the JKR theory with different values of

the interfacial work of adhesion. On loading, the data

cuts across the different JKR curves, while on unload-
ing, the data is reasonably well described by the JKR

theory with a constant interfacial work of adhesion. The

reason JKR theory appears to work so well on un-

loading is that the deformation between points O and C

is elastic, except for the single even between A and B in

Fig. 5(a). Since plastic deformation occur in many steps

in the loading curve between the initial jump-to-contact

and point O, the assumption of elastic deformation in-
herent in the JKR theory is inappropriate and JKR

theory is inapplicable. We have attempted to determine

the interfacial work of adhesion from Eq. (6) and Fig. 12

using the appropriate value of the constants (R � 3 nm

and K ¼ 63:76 GPa) and obtained W � 6830 mJ/m2.

Ideally, the interfacial work of adhesion for this case

should be twice the {0 0 1} surface energy or W0 ¼ 1366

mJ/m2 [22]. The interfacial work of adhesion obtained
from fitting the simulations to the JKR theory is ap-

proximately five times larger than this. This discrepancy

may be largely attributed to the fact that the asperity is

not hemispherical (especially after the plastic deforma-

tion that occurs on loading). On the other hand, the

initial point of contact lies much closer to the W ¼ W0

curve (Fig. 12(b)). This is presumably because the initial

asperity shape prior to loading is close to hemispherical.
Since the contact conductance is a function of the con-

tact radius (Eq. (4)), the dependence of the contact re-

sistance on loading provides another measure of the

evolution of contact size during loading and unloading.

Using the force–displacement relation from Fig. 5(a) for

the force-controlled case and the modified Sharvin

equation (Eq. (4)), we can determine the contact resis-

tance as a function of applied load for the same type of
experiment as in Fig. 12(c). The results, plotted in

Fig. 12(d), show excellent correspondence with the ex-

perimental measurements reproduced in Fig. 12(c).

Previous MD simulations of nano-indentation [16]

have reported multiple force drops occurring during the

indentation of a crystal using a hard indenter. These

drops were associated with the nucleation and propa-

gation of dislocations. These simulations showed that as
the depth of the indentation increases, the dislocations/

defect densities continuously increase and no recovery of

the structure back to the dislocation-free state was ob-
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served. The stacking faults generated on indentation are

either parallel or splay outward from the indentation.

These observations are in sharp contrast to the present

simulations where the deformation is limited to the as-

perity and its substrate. In particular, during loading of
the asperity, dislocations and stacking faults are re-

peatedly generated and annihilated and the stacking

faults generated focus to produce the observed stacking

fault pyramids. Each stacking fault annihilation event in

the asperity loading simulations was associated with

large force drops. This is quite distinct from the force

drops seen in the nano-indentation simulations where

they were only associated with dislocation nucleation.
Hence, it is not appropriate to extrapolate from the

nano-indentation case to understand asperity deforma-

tion in compression, despite the apparent similarities in

geometry.

We performed a series of preliminary simulations of

asperity contact for the case of (1 1 1) oriented asperities.

This was designed to get an initial idea of how much

asperity orientation affects the deformation behavior.
For the asperity on the {0 0 1} surface, the force–dis-

placement curve shows repetitive small and large force

drops corresponding to the generation and annihilation

of stacking fault pyramids (composed of intrinsic

stacking faults on four {1 1 1} slip planes) during load-

ing, the loss of one {0 0 2} atomic plane in each force

drop cycle, and dislocations extending into the sub-

strate. In a similar manner, the compressive deformation
of an asperity on the {1 1 1} surface also produces pe-

riodic force drops that correspond to the disappearance

of one {1 1 1} atomic plane in the asperity and defor-

mation localized to the asperity region. However, be-

cause of the difference in the orientation of the slip

planes in the two cases, the stacking fault pyramid ob-

served in the {1 0 0} case does not appear in the {1 1 1}

case. While the unloading of the {0 0 1} asperity gener-
ate extrinsic stacking faults, unloading the {1 1 1} as-

perity produced intrinsic stacking faults. The main

conclusion from this comparison is that the general

features of the observations made in the {0 0 1} case (the

focus of this paper) are robust upon change of asperity

orientation (however, the detailed deformation mecha-

nism may be quite different).

Finally, we briefly consider the effects of asperity size
and substrate thickness in our simulations. To this end,

we performed a preliminary series of simulations in

which we increased the substrate thickness by a factor of

two at fixed asperity size. The results showed that the

same type of deformation behavior occurred in both

cases, albeit the deformation events occurred at slightly

larger displacement in the thicker substrate case. This

delay is associated with the decrease influence of the
rigid layer at the bottom of the substrate as the substrate

thickness is increased. This is not surprising since the

rigid layer provides some constraint on the deformation
(even though the depths to which the dislocations pen-

etrated into the substrate is similar for both substrate

thicknesses). We also performed a preliminary simula-

tion with both smaller (�1.5 nm) and larger (�6 nm)

radius asperities (the simulations discussed above used
�3 nm asperities). The �6 nm asperity exhibited the

same deformation mechanisms as did the �3 nm as-

perity. However, the plastic deformation of the �1.5 nm

asperity produced no stacking fault pyramid and was

only localized to within the asperity at small displace-

ments. At larger displacement, the deformation contin-

uously increases the defect density in the substrate, with

no recovery to the dislocation-free structure. Hence,
while asperities of size greater than a few nm behave

similarly, the deformation of very small asperities may

be different. This may be associated with the fact that

such asperities become comparable with dislocation core

sizes and hence well-formed dislocations may not exist.
6. Conclusion

We presented the results of a molecular dynamics

simulation of single asperity contact and deformation as

two surfaces are brought together, loaded and then

separated. We monitored the force between the two

surfaces, the total potential energy, the Q6 order pa-

rameter, and the effective minimum contact radius. The

latter was used, together with the modified Sharvin
equation to estimate the conductance of the contact

during asperity deformation. The local bond order pa-

rameter [23] was used to identify the formation and

motion of defects (stacking faults, dislocations, and

vacancies) during the loading and unloading cycle.

During loading, the force–displacement relation exhib-

ited sawtooth features, associated with repetitive gen-

eration and motion of partial dislocations and the
concomitant creation and annihilation of stacking fault

pyramids. The plastic deformation corresponding to

each force drop induced a discrete change in the thick-

ness of the asperity, its effective radius and the con-

ductance of the contact. Upon unloading, existing

stacking fault pyramids are annihilated, followed by an

extended elastic deformation regime. The plastic defor-

mation that follows the termination of the elastic be-
havior created extrinsic stacking faults, rather than the

intrinsic stacking faults seen during loading. The onset

of plastic deformation coincides with the maximum

tensile force.

The molecular dynamics simulation results were then

compared with experimental results [4,5] obtained using

a compliant cantilever. This comparison required the

conversion of the simulation results that corresponded to
an experiment on a very stiff testing machine to the case

of a very soft testing machine (cantilever beam experi-

ment). For this type of experiment, the simulations show
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very abrupt jumps in force or conductance and elastic

deformation extended to larger displacements. The

qualitative features of the force, contact area and con-

ductance versus displacement plots are in excellent

qualitative agreement with the extant experimental re-
sults. This includes the pronounced differences observed

between loading and unloading. The simulations and

experiments both show that Johnson–Kendall–Roberts

theory should not be applied to describe asperity load-

ing, but is applicable to the case of unloading, where the

deformation is nearly elastic.
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