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Abstract

Experimental measurements of the solvation forces between mica surfaces immersed in a binary
solution of octamethylcyclotetrasiloxane and cyclohexane are reported. At all bulk concentrations
examined (0-14, 32 and 42 mol% cyclohexane), the force varies between attraction and repulsion
as the surface separation is decreased. The magnitudes of the forces at the attractive force minima
decay exponentially with surface separation. The characteristic decay length and the average sep-
aration between attractive minima are functions of the bulk concentration. The statistical me-
chanics of inhomogeneous one-dimensional hard rod mixtures can be used to interpret the exper-
imental results. The distribution functions and thermodynamic properties of a multicomponent
hard rod fluid confined in a one-dimensional slit-pore are summarized. Density profiles and dis-
joining pressures are calculated as functions of pore width. Because of mechanical instabilities
associated with the force measurement technique as presently used, not all theoretically predicted
force minima (and maxima) are experimentally accessible.

1. INTRODUCTION

The behavior of liquids confined by solid surfaces to microscopic dimensions
in at least one or more directions is of great interest to scientists and engineers
seeking to understand the basic mechanisms of colloidal interactions, wetting
and spreading, lubrication, membrane separations, sol-gel fabrication, and the
like. Solid surfaces induce microstructure in liquids. The molecular structuring
of liquid between solid surfaces gives rise to an anisotropic state of stress in
the liquid that depends on the clearance between the surfaces. Hence, at most
separations, confinement of a liquid requires exerting on the walls a normal
stress different from the pressure in bulk liquid at the same temperature and
pressure.

In the late seventies, van Megen and Snook [1] used the Monte Carlo method
of computer simulation to model the behavior of liquid confined between smooth
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planar parallel solid surfaces separated by distances of a few molecular diam-
eters. They discovered that as the separation of the walls diminished, the force
on them, which they termed the “solvation force”, oscillated with increasing
amplitude between repulsion and attraction. Similar results were also pre-
dicted by Lane and Spurling [2]. These theoretical findings were corroborated
by the pioneering work of Horn and Israelachvili [3,4] who used the surface
forces apparatus to measure directly the solvation force on curved mica sur-
faces immersed in the silicone o0il octamethylcyclotetrasiloxane
(OMCTS),[(CH3),Si0].,.

Characteristics of the solvation force in pure liquids between solids are now
well established. The strength and range of the force, which increases with
decreasing separation between the solids, are influenced by the size, shape, and
flexibility of the liquid molecules. In liquids whose molecules are nearly spher-
ical, such as OMCTS, cyclohexane and tetrachloromethane, there are as many
as ten measurable oscillations of the force between attraction and repulsion
[5]. The period of the oscillations is approximately equal to the diameter of
the liquid molecules. In linear alkanes, whose molecules are long and flexible,
there are fewer measurable oscillations of the force, generally not more than
four, the period being approximately equal to the width of the alkane chains
[6].

The last decade has seen major advances in the development of molecular
theories of inhomogeneous fluid, such as the generalized van der Waals theory
of Nordholm and coworkers [7,8], the free energy density functional theory of
Tarazona [9], of Meister and Kroll [10], and of Curtin and Asheroft [11], the
generalized hard rod theory, proposed independently by Robledo and Varea
[12] and by Fischer and Heinbuch [13], and the Yvon-Born-Green distri-
bution function theory with the Fischer—-Methfessel closure approximation
[14]. All have been relatively successful at qualitatively predicting the molec-
ular structuring of a single-component fluid induced by excluded volume ef-
fects. One problem has been identified with the generalized van der Waals
theory; namely, when applied to a van der Waals fluid at sufficiently high
chemical potentials it admits solutions with negative densities [15]. The mo-
lecular theories just named, excepting those of Meister and Kroll [10] and
Curtin and Ashcroft [11], were recently compared as they apply to a single-
component fluid confined between solid surfaces [16].

Comparatively little effort has been directed to measuring, predicting and
understanding the forces required to confine multicomponent fluids between
solid surfaces. Christenson and Blom [17] examined systematically the effect
of water in nonpolar liquids confined between mica surfaces; their study was
largely motivated by previous observations [4,18] that solvation forces in non-
polar liquids are sensitive to trace amounts of dissolved water. Previously,
Christenson [19] measured solvation forces in mixtures of two miscible non-
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polar liquids (OMCTS and cyclohexane) confined between mica surfaces;
however, he investigated only a few different bulk liquid concentrations.

On the theoretical front, little effort has been made to extend systematically
molecular theories of an inhomogeneous fluid to multicomponent fluids. Two
notable exceptions are the multicomponent extensions of the generalized van
der Waals theory [20] and the YBG distribution function theory [21]. The
multicomponent generalized van der Waals theory is, however, unsatisfactory
for two reasons: the inadequacy of the single-component version of the theory
that is manifested at high density, and the absence of an accurate equation of
state of multicomponent fluid as underpinning. The YBG theory is based on
mechanical equilibrium, and so cannot be applied to open systems in which
the chemical potentials are the controlled field variables.

One benchmark in testing and guide in developing approximate theories of
an inhomogeneous fluid is the exact theory of one-dimensional hard rods in an
external field. The statistical mechanics of this system can be solved for ex-
actly. In 1976, Percus [22] developed the distribution functions of hard rods
in an arbitrary external field, and recently this was extended to multicompo-
nent systems [23].

This paper has two main parts. In Section 2, we report our measurements of
the solvation forces in binary solutions of OMCTS and cyclohexane confined
between mica surfaces; these measurements constitute a more thorough and
systematic continuation of the measurements of Christenson {19] on the same
system. In Section 3, we consider the theory of open isothermal systems of one-
dimensional hard rod mixtures confined in a slit-pore, i.e., on a line of finite
length, and present analytical expressions for the equilibrium properties of this
system; in Section 4, we use these to understand and interpret the experimen-
tal results.

2. SURFACE FORCES EXPERIMENTS

The experimental section is divided into four parts. In Section 2.1, we de-
scribe the design and operation of the surface forces apparatus with particular
attention devoted to the role of mechanical instabilities in measuring force
curves. An understanding of such instabilities is critical to relating the exper-
imental results with the theoretical predictions for the binary hard rod system.
In Section 2.2, we summarize the experimental method. In Section 2.3 we re-
port our measurements of the solvation forces in pure OMCTS and pure cy-
clohexane between mica surfaces; our results are compared with those obtained
by Christenson and coworkers [5,17). Furthermore, for the first time, a statis-
tical analysis is brought to bear in interpreting the experimental findings. In
Section 2.4 we report measurements of the solvation forces in mixtures of
OMCTS and cyclohexane between mica surfaces.
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2.1. Description of the surface forces apparatus

The force required to confine a liquid film between two solid surfaces can be
directly measured with the surface forces apparatus. With this apparatus, one
can measure the distance between two molecularly smooth mica sheets with a
precision of +1 A and the forces on these surfaces with a sensitivity of milli-
dynes. The surface separation can be varied over a range of microns, in incre-
ments as small as &ngstroms.

The surface forces apparatus was designed in Tabor’s laboratory at Cam-
bridge University in the late 1960’s [24] and refined into the form used here
by Israelachvili and Adams [25]. A schematic of the apparatus is shown in Fig.
1. The mica sheets are glued onto cylindrical lenses of quartz whose axes are
oriented perpendicular to one another. The upper lens is mounted on a fixed
support whereas the lower lens is mounted at the end of a leaf spring of known
spring constant.

In the experiment, the deflection of the leaf spring supporting the lower
surface is measured as a function of the separation between the mica sheets.
The force required to confine the liquid between the mica surfaces is, by Hooke’s
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Fig. 1. Schematic of the surface forces apparatus.
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law, proportional to the deflection of the spring. It is useful to distinguish be-
tween two separations. The surface separation is the distance between the mica
surfaces. The reference separation is the distance between the top mica surface
and the base of the leaf spring. The spring deflection is then equal to the dif-
ference between the surface separation and the reference separation.

The reference separation can be changed by one of three methods. The base
of the leaf spring can be mechanically moved coarsely (microns) by the upper
motor-driven micrometer screw, or finely (nanometers) by the lower motor-
driven micrometer screw. The lower screw operates on a differential spring
mechanism consisting of a weak helical spring in tandem with a stiff double
cantilever spring, the latter being roughly one thousand times stiffer than the
former. A displacement of the lower micrometer screw thus induces a displace-
ment of the base of the leaf spring that is reduced by a factor of one thousand.
The synchronous motor which drives the lower micrometer screw is coupled
to a variable resistance potentiometer, thus allowing resistance to be recorded
as the screw is turned. The ability to change mechanically the reference sepa-
ration by nanometers, over a range of microns, is the forte of the apparatus.
Changes in reference separation down to Angstroms can be obtained by mount-
ing the upper surface on a piezoelectric crystal tube which expands or contracts
in response to an applied voltage.

The surface separation is measured by multiple beam interferometry. Before
the mica sheets are glued onto the quartz lenses, a thin film of silver (ca 560
A) is deposited on the side of the mica sheet which will contact the glue. The
resulting silver-mica-medium-mica-silver sandwich constitutes an interfer-
ometer. When white light is passed through it, only discrete wavelengths in-
terfere constructively and are transmitted. The transmitted light is focused
onto the slit of a spectrometer, where it is dispersed into its component wave-
lengths and can be viewed as a series of fringes. The wavelengths of the fringes
vary continuously with surface separation and can be used to determine the
separation relative to a reference state, which is usually the closest approach
of the mica surfaces in air.

The apparatus is used to measure forces in the following way. First the meth-
ods used to change the reference separation are calibrated. This is done at
surface separation large enough that no force is present and so the spring is
not deflected. Hence, the induced change in reference separation, as monitored
by the resistance (lower micrometer screw) or applied voltage (piezoelectric
crystal), is equal to the change in surface separation, which is measured opti-
cally. This is illustrated in Fig. 2A. The calibration constant, dD/do, repre-
senting the change in reference separation per unit « is thus determined, where
« is either resistance or voltage, depending on the mechanism used to change
the reference separation. Thereafter, the reference separation is changed by
calibrated amounts and the resulting change in separation between the sur-
faces is measured. This is illustrated in Fig. 2B. Consequently, the difference
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Fig. 2. Method of force measurement. Mechanisms used to change the reference separation are
calibrated at large surface separation, where no forces are present.

in force at two surface separations, D) and D*, is given by the spring constant,
K, times the difference in spring deflection:

F—F*:K[(D—D*)—j—g (af—a*):l (1)

Typically, the force at any distance D is determined relative to zero force (zero
spring deflection) at some large distance D*.

In the experiment, the surfaces are curved and the surface separation, D,
refers to the shortest distance between the mica surfaces. If the range of the
forces is small in comparison with the radii of curvature of the surfaces, then
the Derjaguin approximation can be used to relate the forces exerted between
curved surfaces to the energy between flat surfaces. According to this approx-
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imation, the force exerted between crossed cylinders of radius R, and R, is
related to the energy per unit, E, area between planes separated a distance D
by

F(D)=2n/R,R,E(D) (2)

where D is taken to be the shortest distance between the two cylinders. While
the curvature of the cylindrical quartz lenses is fixed ( & 1-2 ¢m), the curvature
of each mica sheet is determined by the curvature of the glue layer between the
mica and the lens. The Derjaguin approximation is used to eliminate the de-
pendence of the measured forces on the local radii of curvature of the mica
surfaces, which can vary from one experiment to the next. The derivative of
E(D) with respect to D is the disjoining or solvation pressure between flat
plates separated by the distance D.

One limitation inherent to the method of force measurement is that the force
can only be measured at surface separations where the gradient of the force,
dF/dD, is less than the spring constant K; at distances where the gradient of
the force is greater than the spring constant, the leaf spring which supports
the lower surface is mechanically unstable. At a limit of mechanical instability,
where dF/dD =K, the surfaces jump spontaneously to a new separation, the
reference separation being fixed. On a plot of force versus separation, the tra-
jectory of this jump follows a line of slope equal to the spring constant, from
the point of instability to the next stable intersection of the force curve [26,27].
Therefore, forces can be continuously measured up to a limit of stability, at
which point the force changes discontinuously by an amount equal to the spring
constant times the distance of the jump.

Mechanical points of instability play a crucial role in the measurement of
forces which oscillate with separation. Consider a force curve which oscillates
between attractive (negative) and repulsive (positive) forces with increasing
amplitude as the separation decreases. Then, starting at large separation and
continuously decreasing the reference separation, forces are measured up a
series of discretely spaced repulsive walls; the surfaces jump from one wall to
the next at points of instability located just past each force maximum. Because
the distance, and therefore the jump, between the repulsive walls is small, it is
difficult to determine accurately both the force and the separation at the points
of instability located near each repulsive maximum.

On the other hand, starting at small separation and continuously increasing
the reference separation, forces are measured until the separation increases to
just past that at the nearest force minimum. Here, the surfaces jump apart to
large separation, generally in the force-free regime. Such points of instability
are termed ‘“adhesive minima” because the surfaces seem stuck together as
they are pulled apart.

In practice, the gradient of the force changes very rapidly in the vicinity of
force maxima and minima, and so the points of mechanical instability nearly
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coincide with the maxima and minima of the force curve. An important point
is that the forces between an instability located near a force minimum and an
instability located near the next force maximum at larger separation are ex-
perimentally inaccessible.

In addition to this inherent limitation, there is a practical limit on the mag-
nitude of repulsive forces that can be measured with a spring of given stiffness.
As the spring supporting the lower surface deflects, there is necessarily a lat-
eral displacement of the lower surface relative to the upper. Excessive shearing
of the mica surfaces associated with large compressive loads can cause local
surface damage. This limitation can be circumvented by using a variable stiff-
ness spring [6]; however, springs of fixed stiffness (~1-10% dyn cm~') were
used in the experiments reported herein.

Certain features of the experimental technique allow adhesive force minima
to be measured more precisely and accurately than repulsive force maxima;
these are discussed in what follows.

If the external force required to overcome a repulsive force barrier exceeds a
threshold, the glue between the mica and the quartz lens deforms, causing the
surfaces to flatten about the point of contact. The force threshold depends
primarily on the type of glue (ca 2-10° uN m~" for epoxy resins) but also on
the steepness of the force barrier [28] and the rate of approach {6]. Such
surface deformations are readily observed by the interferometric technique.
When the surfaces are deformed, the measured deflection of the leaf spring is
greater than the disjoining force by an amount equal to the force required to
deform the glue. The deformation of the glue is usually elastic; thus, as the
external load is released, the glue layer returns to its original shape. Hence, the
accuracy of the force measured at an adhesive minimum is not affected by such
surface deformations.

Christenson and coworkers [6] have noticed in recent measurements of the
solvation force in liquid alkanes between mica surfaces that the forces at the
repulsive maxima are not as reproducibly measured as those at the adhesive
minima. They suggested that the repulsive forces measured on approach de-
pend on the rate at which the surfaces are brought together, and that this
accounts for the variability of the force maxima measured within an experiment.

2.2. Experimental method

The surface forces apparatus was used to measure the solvation forces on
mica surfaces immersed in OMCTS, cyclohexane and mixtures of the two lig-
uids. Measurements of the solvation force in pure liquids between mica were
carried out with the entire chamber of the apparatus (V350 cm?) filled with
the solvent.

Two different types of experiments were conducted to measure the solvation
force in binary solutions. In the first type of experiment, designed to investi-
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gate small changes in concentration, the chamber of the apparatus was filled
with OMCTS and the concentration of cyclohexane was varied by injecting
known amounts into the chamber. A magnetic stir bar placed in the bottom of
the chamber was used to mix the liquids. As shown in Fig. 1, the chamber must
be filled to near capacity to completely immerse the two mica surfaces; hence
it is not possible to inject large amounts of additional liquid. For this reason, a
second type of experiment was designed to investigate large changes in con-
centration. Solvation forces were first measured between mica surfaces sepa-
rated by a drop (V=0.05 cm®) of OMCTS, and then the chamber was filled
with a premixed solution of known concentration for subsequent measurement,

Ruby muscovite mica, obtained from the United Mineral and Chemical
Company, New York, NY, was used in all experiments. The OMCTS was pur-
chased from Fluka, Ronkonkoma, NY. Anhydrous “Gold-label” c¢yclohexane
was purchased from Aldrich, Milwaukee, WI.

Solvents were prepared specifically to eliminate two key contaminants: par-
ticulates, which can lodge between the mica surfaces, and residual water dis-
solved in the solvents, which can dramatically affect the magnitudes of the
measured forces. The OMCTS was purified by double vacuum distillation, at
approximately 70°C, under a nitrogen atmosphere. The anhydrous cyclohex-
ane was used without further purification. All solvents were passed through a
Teflon filter (Nuclepore, Pleasanton, CA) upon injection into the surface forces
apparatus.

2.3. Solvation forces measured in pure OMCTS and pure cyclohexane

Since the original experiment by Horn and Israelachvili [3], OMCTS has
played the role of a reference liquid, having been repeatedly used in a host of
experiments designed to determine the effects of temperature [29], water sat-
uration [17], and surface roughness [30] on the solvation force. It has also
been used in dynamical experiments designed to measure the effective viscos-
ity of confined thin films [31,32].

Although it has not been emphasized in the literature, there is a variability
of the measured solvation force, not explainable as measurement uncertainty,
from one experiment to the next, as different mica surfaces are employed. Much
of this irreproducibility has been ascribed to variations in residual water sat-
uration [4,17]. Yet, solvation forces measured in OMCTS dried identically in
situ over phosphorous pentoxide are not reproducible to within experimental
error (cf. Refs [17] and [30]). This variability may be attributed to the exact
chemical composition of the mica surfaces, their relative crystallographic ori-
entation, or the effects of substances, such as water, that are physisorbed onto
the mica surfaces as they are cleaved.

We measured the solvation force on mica sheets immersed in OMCTS in six
separate experiments, using new mica surfaces in each. In no case did we mea-
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sure the solvation force down to zero film thickness. As described in Section
2.1, there is a practical limit to the magnitude of repulsive forces that can be
measured with a spring of fixed stiffness.

In each experiment, a statistical analysis of variance was used to assign the
measurements of the adhesive minima to sample populations, each corre-
sponding to a specific minimum. The analysis is based on a separation of the
variance of all observations into two parts, one which measures the variations
from one population to the next and one which measures the internal varia-
tions within each population. The individual measurements are assigned to
specific sample populations are assigned by maximizing the level of confidence
associated with the hypothesis that measurements are drawn from a set of
statistically different populations. In each experiment, this level of confidence
was greater than 99.99%.

Averaged over the six separate experiments, the period of the force oscilla-
tions, as determined from the relative distance between the sample means, is
7.7+ 1.5 A. This is slightly smaller than the molecular diameter of OMCTS:
9.2 A as estimated from diffusion measurements [33]. The magnitudes of the
forces at the minima decay exponentially with distance, i.e., F ;,ccexp(—D/
A), where F,,;, is the magnitude of the attractive force at the adhesive mini-
mum, D is the surface separation (at the point of closest approach), and A is a
characteristic decay length. The average decay length, over the set of six ex-
periments, is 13.4 + 1.3 A. Although there was some variability in the measured
solvation force over the set of six experiments, the mean period and decay
length are the same to within +2 A,

Measurements by Christenson and Blom [17] of the solvation force in
OMCTS determine the mean period of the oscillations to be 8.5+ 0.5 A. This
is smaller than the period determined in earlier experiments ( ~10 A) by Horn
and Israelachvili [4], the difference being attributed to a lower residual water
saturation. It is, however, slightly larger than the period reported here. They
noted that the peak-to-peak amplitude of the solvation force, as determined
by the difference between the force at a minimum and that at the adjacent
maximum at a larger separation, decays exponentially with distance with a
decay length approximately equal to 12 A.

We measured the solvation force on mica sheets immersed in cyclohexane
in three separate experiments. The mean period and decay length, averaged
over the set of experiments, are 5.4 +1.5 and 10.3+1.0 A, respectively. Our
results are similar to those of Christenson [5], who found a mean period of 5.6
A. The molecular diameter of cyclohexane as determined from diffusion data
is approximately 5.6 A [34]. As with OMCTS, the measured solvation force
varied as the mica surfaces were changed, although the mean period and ex-
ponential decay length remain statistically the same to within +2 A.
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2.4. Solvation forces in binary solutions of OMCTS and cyclohexane

Experiments designed to measure the concentration dependence of the sol-
vation forces on mica surfaces immersed in binary solutions must be carefully
controlled to eliminate variability attributed to other independent variables.
One source of variability is the residual water saturation in the liquids [17].
Another source is the mica; forces measured between different pairs of mica
surfaces in the same solvent, prepared in the same way, differ by more than
the measurement uncertainty. Only recently have researchers begun to address
the importance of the properties of the solid in determining the induced fluid
microstructure and related macroscopic properties [35]. Thus, a systematic
study of the solvation forces on mica surfaces in binary solution requires using
the same mica substrates as the solvent composition is varied, and keeping the
water saturation constant, and as low as possible.

The variation with separation of the force required to confine each pure
liquid between mica sheets can be characterized in terms of the mean period
and exponential decay length, both obtained from measurements of the adhe-
sive force minima. We applied the analysis of variance to the results for pure
OMCTS and cyclohexane. The mean periods of the solvation force in each
liquid are statistically different to 99% confidence; the average decay lengths
are statistically different to 98% confidence. Thus, as one liquid is added to the
other, one effect that can be measured is the change in mean period and decay
length.

In the first set of experiments, solvation forces were measured in binary
solutions of OMCTS and cyclohexane as the bulk liquid concentration of cy-
clohexane was changed from 0 to 14 mol%. As the concentration of cyclohex-
ane is increased from zero, the amplitude of the force curve decreases, i.e., the
magnitudes of both the attractive and repulsive forces are diminished. As this
happens, the minima at largest separation becomes too small to measure. Sub-
sequently, the force maxima at smaller separations decrease and can be sur-
mounted; the force minima at smaller separations can then be measured. The
forces and locations of the measured adhesive minima at five different bulk
concentrations are plotted in Fig. 3. As the concentration of cyclohexane is
increased, the adhesive minima follow trajectories of decreasing force and
smaller separation, i.e., closer distance relative to mica-mica contact (as mea-
sured in air). Although the locations and magnitudes of the force minima vary
systematically with the addition of cyclochexane to OMCTS, the mean period
and decay length in the concentration range studied, down to 86 mol% OMCTS,
are not statistically different from those in pure OMCTS.

We performed two experiments designed to probe larger changes in concen-
tration. In one case the concentration of cyclohexane was increased from 0 to
32 mol%. The mean period of the oscillations changed from 7.7+ 1.3 A in pure
OMCTS to 6.7 +0.7 A in the mixture. The decay length decreased from 13.7 to
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11.2 A. In the other experiment, the concentration of cyclohexane was in-
creased from 0 to 42 mol%. As shown in Fig. 4, the mean period changed from
7.1+1.2 A in pure OMCTS to 5.8+1.3 A in the mixture; the decay length
decreased from 12.6 to 10.2 A.

The results of this study can be compared with the brief study by Christen-
son [19] of the same binary liquid system. He too found that as the mole per-
cent of cyclohexane was changed from 0 to 10%, the amplitude of the forces
decreased, whereas the period remained the same to within experimental un-
certainty. However, within this concentration range he did not observe a shift
in the positions of the minima to slightly smaller separations. At equimolar
concentration, the positions of the adhesive minima were different from those
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measured in pure OMCTS and the period was stated to be intermediate to that
of pure OMCTS and cyclohexane.

QOur results can also be compared with those of Christenson and Blom [17],
who measured the solvation forces in “wet” OMCTS between mica surfaces;
they equilibrated a drop of OMCTS between the mica surfaces with a vapor of
known water activity. They observed a smooth decrease in the amplitude of
the oscillations as the water activity in the vapor was increased from zero, with
no change in the mean period. At 50% water activity, the period of the oscil-
lations, as determined from the minima at large separation, was intermediate
between that of the two pure liquids, although the spacing between the minima
was quite irregular.

3. STATISTICAL MECHANICS OF CONFINED HARD ROD MIXTURES

This section is divided into two parts. In Section 3.1 we present the govern-
ing equations for a multicomponent hard rod fluid confined on a line of finite
length. In Section 3.2, we use the results to predict the density profiles, average
concentration, and disjoining pressure of the confined fluid.

3.1. Governing equations

We consider the equilibrium properties of a hard rod fluid confined on a line
of length L. No external potentials act on the fluid other than that which de-
fines the length of the line segment. The external potential acting on a particle
of component { with diameter d; is given by

u(x)=0, %SxSL—i

2 (3)

d; d;
=0 x<§’,x>L—§'

Thus the center of a particle with diameter d; is strictly prohibited from lying
within d,/2 of each end of the line segment,

The canonical partition function is analytically solvable and provides exact
expressions for all thermodynamic properties of the inhomogeneous fluid. For
a c-component system, containing N; particles of component i such that
> N;=N, the result is
=1

1
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Here 7 is the Heaviside step function and A4; is the de Broglie thermal wave-
length of component i, given by

B 1/2
A =(2nm,~kT> (3)

where h is Planck’s constant, k is Boltzmann’s constant, m; is the particle mass
of component i, and T is the temperature. Note that @x=0 when the total

excluded volume of the particles, given by > N,d,, is greater than L.
j=1

The equilibrium properties of an open isothermal system of hard rods on a
line of length L follow directly from the grand partition function, =;, which
can be expressed as a weighted sum of canonical partition functions:

= Z Z Aflvl...léVcQN (6)
N1 =0 Ne=0

Here A, is the activity of component i, defined by

L_ Ee#i/kT (7)

where y; is the chemical potential of component .
All thermodynamic properties of the open system follow from the grand par-
tition function. In particular, the pressure is given by

P=kT (aln ‘L) (8)
T,u11,..., e

dL

The average number of particles of component i, N,, is given by

N, =kT (aln :L> 9)
04, T oMy ees i 12 M 4 10 He

Alternatively, the equilibrium value of any property X in the open isother-
mal system can be expressed as the grand canonical ensemble average of Xy,
given by

e o}

(Xdoe= 3 Y Xn (10)

N1=0 Nc¢=0

where Xy is the corresponding property for a closed isothermal system com-
posed of N; particles of component i, and % is the probability of observing
such a system in the grand canonical ensemble. The probability 4 is given by
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-
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The kth body density distribution function, n*, is defined such that n*(x,,
-+, x,; L)dx,,- - -, dx, represents the probability of finding the center of a par-
ticle within x; +dx,, the center of a particle within x,+ dx,, etc., up to k parti-
cles. For a single-component hard rod fluid confined on a line of finite length,
Robledo and Rowlinson [36] have shown that the kth body density distribu-
tion function is given by

[1)

=
xt—~xt—1—d | =L —-xx—d/2

k
CkExl —d/2 ([1—1
=2

n*(xy, ", x; L) = = (12)
—-L
Here ( is the reduced activity, defined by
eu/kT
(= Y, (13)

and Z, is the grand partition function for an open system characterized by
length x and reduced activity {. For values of x less than zero, Z,=0. For x equal
to zero, =, = 1.

Equation (12) follows from the fact that particles located at k positions, x;,
-+, X, serve to subdivide the original system of length L into k+ 1 systerfs of

length (x, —g), (xo—x,—d), ", (xp—xr_,—d),and (L—xk—g).Fork=1,the

singlet distribution function, which is the density, is given by

n(x)=csx—d/2fL—x—d/2 (14)

-
which can be readily evaluated for all finite values of L.
The extension of this result to an open c¢-component system of hard rods
confined on a line of length L follows directly. The kth body density distribu-
tion function is given by

k
Cl ot -Ck“:xl"'dl/Q (H Sxi—xt1— (d1+dz—1)/2> SL—xk—dr/2
=2

= (15)

-

—L

n*(x,, e, x5L) =

where a particle at x; has a diameter d,. The reduced activity of component i is
defined by
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et/ kT
= 16
¢ A (16)
The density of each component is then given by
ni(x)=Cih:x—di/2*:L—x—d,’/2 i=1,"',C (17)

ZL
3.2. Application to binary hard rod fluid confined in a slit-pore

We now use the exact theory of multicomponent hard rod fluid to investigate
the behavior of a binary hard rod fluid on a line of finite length, i.e., the fluid
is confined in a slit-pore. The pore fluid is in equilibrium with bulk fluid at
fixed temperature, pressure and concentration.

The chemical potential of each fluid component is, of course, equal to the
chemical potential in the bulk fluid. The thermodynamic properties of the bulk
homogeneous fluid can be calculated from a canonical ensemble of systems as
the length L goes to infinity at fixed density, N/L. In this case, the chemical
potential of component ¢ in bulk fluid at temperature T and pressure P is given
by

ui=kTIn(A,x°P)+d,P (18)

where x? is the mole fraction of component i in the bulk fluid.

We consider a binary hard rod fluid with d,=1.5d,. This relative size ratio
is approximately that of OMCTS and cyclohexane. Density profiles of con-
fined fluid in equilibrium with bulk fluid at a pressure of 3kTd{ ' are shown in
Fig. 5. The pore width varies from 2.0d; to 3.5d,. Three separate bulk concen-
trations are examined: x? =0.8, 0.5 and 0.2. The density, n;(x), can be inter-
preted as the unnormalized probability of finding the center of a particle of
component { at position x. The center of the slit-pore corresponds to x=0 (note,
however, that the equations presented in Section 3.1 correspond to a slit-pore
with the center at x=L/2).

At a given pore width, %y, y, is the probability that a pore is in an occupancy
state corresponding to N, particles of component one and N, particles of com-
ponent two, denoted hereafter by (IV,, N,). The probability of a particular
occupancy state depends on the chemical potentials of each component and is
given by Eqn (11). Recall that a given occupancy state becomes permissible,
i.e., occurs with non-zero probability, only if the length of the pore is greater
than the excluded volume, N;d, + Nod,. We now interpret the resulting density
profiles in terms of permissible occupancy states.

At L=2d,, for example, the permissible occupancy states are
(N,,N;)={(0,0),(1,0),(0,1)}. Note that the density distribution of each com-
ponent is characteristic of a pore occupied by a single particle: the density is
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uniform in the region of pore space where the external potential acting on that
particular component is zero. As x? decreases, n,(x), or equivalently the prob-
ability of finding the center of a particle of component two at x, increases while
n,(x) decreases.

At L=2.5d,, a new possibility is added to the set of permissible occupancy
states: two particles of component one, (N,, N,)=(2,0). The density profile
of component one is thus a weighted superposition of two profiles: one char-
acteristic of a pore occupied by a single particle and one characteristic of a pore
occupied by two particles. For (N}, N,)=(1,0), there is a finite probability
that the center of the particle will be found in the center of the pore, i.e., n, (0)
is non-zero. On the other hand, for (N, N.)=(2,0), n,(0) =0.

At L=3d,, another new possibility is added to the set of permissible occu-
pancy states: (N,, N,) = (1,1). At this larger pore width, the probability of (V,,
N,)=(1,0) is negligible, and so the density distribution of component one is
now primarily determined from a weighted superposition of only two profiles:
those corresponding to (N, N,)=(2,0) and (N;, N,)=(1,1). One can easily
identify the contributions from each profile to the resultant density profile of
component one. For (N, N,)=(2,0), the density within the pore is zero only
at x=0. For (N,;, N;) =(1,1), the density is identically zero in a finite region
about the center: n, (x) =0 for | x| £0.25. The density distribution of compo-
nent two is also a weighted superposition of two profiles, one corresponding to
(N;, N;)=(0,1) and one corresponding to (N;,N,)=(1,1). In the first case,
n,(0) is non-zero; in the second case, n,(0) =0.

The results can be summarized as follows. At pore widths greater than d, + d.,
two types of occupancy states can occur with non-zero probability: pure occu-
pancy states composed of one or more particles of a single-component, or mixed
occupancy states composed of one or more particles of both components. The
probabilities of all pure occupancy states of component one fall continuously
as x° decreases, while the probabilities of all pure occupancy states of compo-
nent two continuously rise. All mixed occupancy states occur, of course, with
zero probability in the limits of x? =0 and x% =1. The probability of a permis-
sible mixed occupancy state is a maximum at some intermediate bulk concen-
tration, which depends on the length, relative sizes and chemical potentials of
the fluid components.

As the bulk mole fraction approaches the limiting values of zero or one, the
ensemble average properties of the confined binary fluid are dominated by pure
occupancy states of the component which is in excess in the bulk fluid. At
intermediate concentrations, however, the properties of the confined fluid are
determined by both the permissible pure occupancy states and the numerous
mixed occupancy states which can occur. The latter can, in many cases, com-
pletely dominate the ensemble average properties of the confined fluid. For
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Fig. 5. Density profiles of a binary hard rod fluid confined in a one-dimensional slit-pore. The
solid curves are the density profiles for component 1. The dashed curves are the density profiles
for component 2: d,=1.5d,. The confined fluid is in equilibrium with bulk fluid at P*=3kT/d,.

example at L=3.5d,, the (1,1) mixture occupancy state plays the dominant
role in establishing the ensemble average properties at all three bulk compo-
sitions examined.

Density profiles of a binary hard rod fluid with d,=2.5d, are also presented
in Fig. 5. The behavior of this system is qualitatively similar to the binary fluid
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with d,=1.5d,, and can be analyzed in terms of occupancy states as described
above. Hence, density profiles are only shown for x%? =0.5.

The average occupation number of particles of component i in the pore is
given by

N=Y - Y NP (19)
N1=0 Ne=0

The total average occupation number, N, is simply
N=Y N, (20)
1=1

Unlike the total average occupation number, the average occupation number
of each component does not necessarily increase monotonically with pore width.

At a given pore width, the pore average mole fraction of component i, defined
by

i, =N,/N (21)

can be significantly different from the mole fraction of component i in the bulk
fluid. There is a partitioning of fluid components between the confined and
bulk fluids that is based on size selectivity. Figure 6 shows the variation with
pore width of the pore average mole fraction at five different bulk concentra-
tions. The pore average mole fraction of component one oscillates with pore
width with a period that decreases as the mole fraction of component one in
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Fig. 6. Variation of pore average mole fraction with pore width in a binary hard rod fluid with
dy=1.5d,. The bulk pressure is P*=3kT/d,.
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the bulk decreases. The selectivity of the pore increases with decreasing pore
width.

The pressure of multicomponent fluid at a given pore width is given by the
grand canonical ensemble average:

P(L)=Z z PNx.Nz ‘@Nl,Nz
N1 N2 (22)
RT(N,+N,)

= Py,
QML—NIdl—Nde N

The disjoining pressure, 7, is defined as the difference between the normal
stress in the pore fluid and the isotropic stress in the bulk fluid. In one dimen-
sion, the normal stress is equal to the pressure, as defined above; thus
n=P— P*'*, The solvation force between two flat solids immersed in a liquid
is equal to the integral of the disjoining pressure over the area of interaction.
The variation of disjoining pressure with pore width for a confined binary fluid
with d,=1.5d, is shown in Fig. 7 at five different bulk compositions, including
the limiting cases of x? =0 and x? =1.

The pressure of the binary confined fluid can be decomposed into a sum of
canonical weighted pressures, given by Px, n, Zv, .- This product of the ca-
nonical pressure, Py, »,, times the probability of the given occupancy state,
Priing» 18 Zero for pore widths less than the excluded volume, N d, + N,d,, in-
creases to a maximum at a pore width slightly larger than the excluded volume,
and decreases monotonically to zero as the pore width goes to infinity. The
probability of a given occupancy state, and hence the relative contribution of
Py, vy Pui N, to the total pressure, is strongly dependent on the bulk fluid com-
position and pressure.

As the mole fraction of the second component in the bulk fluid is increased
from zero, the variation with pore width of the ensemble average pressure re-
flects the following changes. First, there is a sharp increase in pressure at a
pore length just past d,. This is due to the fractional increase os states occupied
by one particle of component two. As x5 continues to increase, similar in-
creases in pressure commence at pore lengths just past each multiple of d,. Not
only does the resultant pressure curve reflect the increasing importance of
occupancy states which consist only of particles of component two, it also re-
flects the relative decrease in probabilities of occupancy states which consist
only of particles of component one. As x3 increases, one can observe the rela-
tive decrease in the pressure maxima associated with the canonical weighted
pressure curves corresponding to pure occupancy states of component one.

Unlike the pure confined fluid, the variation with pore width of pressure in
a binary fluid is complicated by the occurrence of mixed occupancy states. For
example, one can see at intermediate concentrations sharp increases in pres-
sure at pore widths just past d, +d, and 2d;+d,. The relative importance of
the mixed occupancy states in determining the properties of the confined fluid
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Fig. 7. Variation of disjoining pressure with pore width for a binary hard rod fluid with d,=1.54d,.
The bulk pressure is P°=3kT/d,.

is determined by the chemical potentials of the fluid components, their relative
sizes, and the pressure of the bulk fluid.

4. COMPARISON OF THEORY AND EXPERIMENT

The theoretical analysis can be used to interpret measurements of the sol-
vation force on mica surfaces immersed in mixtures of cyclohexane and
OMCTS. Because the mica surfaces in the experiment are crossed cylinders,
we measure E(D)=[% n(D')dD’ instead of n(D). Qualitatively, however,
E(D) and n(D) behave similarly with respect to the trends we wish to empha-
size. Thus, we discuss the theoretical results in terms of (D).
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First we compare the results for pure hard rod fluid confined between solid
surfaces. Note from Fig. 7, that in the limit of single-component fluid, the
disjoining pressure oscillates with increasing amplitude between positive and
negative values, corresponding to repulsive and attractive solvation forces, as
the separation decreases. In the limit of pure component 2 (d,=1.5d,), the
average distance between successive minima is 1.1d,. Excluding the weakest
minima at large separation, the magnitudes of the disjoining pressures at the
local minima decay exponentially with separation. The characteristic decay
length, based on the six minima at the smallest separations, is 2.5d,. The vari-
ation with pore width of the disjoining pressure in pure component one is qual-
itatively similar. The period of the oscillations as calculated from the mean
distance between local minima is 1.2d,. The characteristic decay length is 1.5d,.

Experimentally, the solvation force is found to oscillate regularly between
attraction and repulsion with a period equal to or slightly smaller than the
diameter of the fluid molecules, as determined from the distance between suc-
cessive adhesive minima. The magnitudes of the forces at the adhesive minima
decay exponentially with separation with a characteristic decay length that is
between 1.5 and 2 times the period of the oscillations. Clearly this behavior is
qualitatively reproduced by the hard rod system. The mean periods predicted
for the hard rod system are slightly larger in comparison, but the mean period
is expected to decrease as the dimensionality of the system is increased from
one to three.

We now compare the theoretical predictions with the experiments in binary
solution. As shown in Fig. 7, the resulting changes in the variation with pore
width of the disjoining pressure as the bulk fluid concentration is changed from
pure 2 to pure 1 can be decomposed into three competing phenomena. First, as
the bulk fluid concentration of 1 is increased from zero, the magnitudes of the
disjoining pressure at the minima and maxima are diminished, and the loca-
tions of each maximum and minimum are slightly shifted. The minima and
maxima originally present in the disjoining pressure curve of pure 2 are grad-
ually washed out. The second phenomenon is the occurrence of a set of new
local minima and maxima which appear as component 1 is added to component
2. These maxima and minima grow in continuously and become the corre-
sponding minima and maxima in the disjoining pressure curve in pure 1. The
third phenomenon is the occurrence of an additional set of minima and max-
ima which appear as component 1 is added to component 2. However, these
minima and maxima eventually disappear as the concentration of the bulk
fluid reaches pure 1.

Before the theoretical predictions can be compared with experimental mea-
surements of the solvation force in mixtures, the role of mechanical instabili-
ties in the force measurement technique, as described in Section 2.1, must be
addressed. Because of mechanical instabilities, not all theoretically predicted



31

minima are experimentally accessible to the surface forces apparatus in its cur-
rent design.

We thus assume that a predicted force minimum corresponds to an “exper-
imentally accessible adhesive minimum” if the following conditions are true.
First, the minimum must be experimentally accessible. Since each local mini-
mum is located between two local maxima, this requires that the force at the
local maximum at smaller separation be greater than the force at the local
maximum at larger separation. Second, the minimum must be an adhesive
minimum. This means that the surfaces must jump to large separation, in the
force free regime, as they are pulled apart. This requires that the magnitude of
the force at the minimum be larger than that at all local minima at larger
separation. Third, the magnitude of the force at the minimum must be greater
than the sensitivity of the apparatus used to measure the force.

Plotted in Fig. 8 are the experimentally accessible adhesive minima pre-
dicted for the hard rod system as the bulk fluid concentration of the smaller
component, x?, is increased from 0 to 14 mol%. As x% is increased, the positions
of the adhesive minimum shift to slightly smaller separation and their mag-
nitudes fall. The mean period and decay length predicted at each bulk fluid
concentration examined are reported in Table 1. In this concentration range,
the mean period and exponential decay length remain similar to that in pure
component 2.

Figure 9 shows the experimentally accessible adhesive minima predicted for
an equimolar bulk fluid concentration; the results are compared to the limiting
single-component results. In this case, the forces decay exponentially, al-
though the decay length is smaller than that of either single-component fluid.
The mean period is slightly smaller than the mean period predicted for pure
component 1. At other intermediate concentrations, the mean period and de-
cay length are generally intermediate between those predicted in either pure
fluid.

The trends predicted theoretically are again consistent with those observed
experimentally. As the concentration of the smaller component, cyclohexane,
in the bulk liquid is increased from 0 to 14 mol%, the measured solvation forces
remain oscillatory. However, the magnitudes of the adhesive minima decrease
continuously and their locations shift slightly to smaller separations. The mean
period and exponential decay of the forces at the adhesive minima remain the
same as in pure OMCTS. At higher molar concentrations of cyclohexane, in
particular 32 and 42%, the solvation force continues to alternate between at-
traction and repulsion, but the mean period and characteristic decay length
are statistically different from those in pure OMCTS, and are intermediate to
those in either cyclohexane or OMCTS.
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TABLE 1

Mean period and exponential decay length of solvation forces in a binary hard rod fluid: d, =1.5d,.
The confined binary fluid is in equilibrium with bulk fluid at P*=3 kTd,

Xt Mean period (d,) Decay length (d;)

0.00 1.64 3.70
0.05 1.60 3.58
0.14 1.69 2.62
0.50 1.61 1.29
1.00 1.17 1.53
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Fig. 9. Experimentally accessible adhesive minima for confined binary hard rod fluid, with d,=1.5d,,
in equilibrium with bulk fluid at equimolar concentration. Results are compared with adhesive
minima for confined single-component hard rod fluids: x?=0 (@); 0.50 (M); 1 (). The bulk
pressure is P°=3kT/d,.
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Recently, Vanderlick et al. [37] have extended the generalized hard rod model
for a three-dimensional fluid to multicomponent systems. This model reduces
to the exact one-dimensional result for hard rods in an external field. Appli-
cation of the model to three-dimensional binary fluid confined between solid
surfaces will be reported in a future publication. We note here, however, that
all the trends observed in the one-dimensional system are carried over to the
three-dimensional system.
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