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Density profiles and normal pressures predicted by three different approximate density
functional free energy theories and the Fischer—Methfessel approximation to the Yvon-Born—
Green (YBG) equation are compared with computer simulation results for fluids confined
between planar walls. All models require as input a homogeneous fluid equation of state.
Comparisons are made using two mean-field equations of state, one based on a Clausius hard-
sphere reference fluid and the other based on a Carnahan/Starling hard-sphere reference fluid.
The simplest and oldest of the models, the generalized van der Waals model, becomes
unphysical at high mean pore densities. The Carnahan/Starling version of Tarazona model
agrees best overall with the simulations. This model represents a systematic improvement on
the generalized van der Waals model and is computationally the most complicated of all
models examined. The YBG and generalized hard-rod models are not as accurate as the
Tarazona model, but they capture the qualitative trends observed in the simulations. Both of
these models are intuitive extensions of the exact theory of one-dimensional hard rods, and are
computationally much simpler than the Tarazona model.

I. INTRODUCTION

Understanding the behavior of fluids confined by solid
surfaces is of fundamental importance to many practical
processes, such as lubrication, membrane separations, chro-
matography, adhesion, and enhanced oil recovery. Fluids
confined by solid surfaces in at least one direction also play
major roles in catalysis, drying of paper products, and aggre-
gation of colloids. The behavior of confined fluids can be
significantly different from that of bulk fluid. Furthermore,
the properties of a confined fluid can vary dramatically with
the degree of confinement.

The density distribution of a confined fluid can vary
over multiple length scales. Layering and packing effects re-
lated to the finite size of the fluid particles cause the density
to vary on a length scale the size of the fluid particles. Solid—
fluid and fluid—fluid interactions can also give rise to thin-
film structures whose length scales range from molecular to
micron sizes. An example of the latter is wetting films some-
times present on solid surfaces.

One of the most demanding tests of theories of strongly
inhomogeneous fluid, i.e., fluid whose density varies signifi-
cantly over molecular dimensions, is the prediction of fluid
structure between solid surfaces. The spatial arrangement of
fluid particles is directly related to their ability to distribute
themselves effectively in the gap between the solid surfaces.
The theory must successfully account for the finite size of the
fluid particles, which gives rise to the excluded volume ef-
fects that govern the equilibrium density distribution.

Free energy density functional theory is one common
approach to predicting the density distribution of inhomo-
geneous fluid. The essence of free energy density functional
theory is the construction of an expression for the free energy
of the inhomogeneous system. This free energy is a func-
tional of the density distribution, i.e., the variation of particle
number density with position. This method originated with
van der Waals,' who developed a mean-field theory of inho-
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mogeneous fluid to predict the structure of the liquid—vapor
interface. The rigorous, modern statistical mechanical foun-
dations of density functional theory were largely laid a cou-
ple of decades ago.>* Since then a lot of effort has gone into
reducing the exact results to tractable but accurate approxi-
mations to describe liquid—vapor interfaces,*® liquid-liquid
interfaces,” wetting transitions at solid surfaces,®® and solva-
tion forces of fluid confined between solid surfaces.'?

Parallel to the density functional free energy theory is
the distribution function theory. The Yvon-Born-Green
(YBG) equation, a prominent example of this theory, fur-
nishes an exact relation between the density distribution
n(r) and the pair correlation function g(r,r’). To render the
rigorous YBG equation solvable for the fluid density distri-
bution, an approximation of the inhomogeneous pair corre-
lation function must be made. One such approximation was
proposed by Fischer and Methfessel'! and used successfully
by them to “‘close” the YBG equation.

In this paper we explore the applicability of both types
of theories to predicting the structure of confined fluid by
examining the relative merits of the most prominent ap-
proximate free energy density functionals and the Yvon-
Born-Green equation with the Fischer—Methfessel approxi-
mation. We apply for the first time a new free energy func-
tional which was suggested by Robledo and Varea,'? and
also by Fischer and Heinbuch,'? as a generalization of Per-
cus’ exact solution of the one-dimensional hard-rod sys-
tem." We focus on the ability of each model to predict den-
sity distributions when the average density of the confined
fluid is high, similar to that of bulk liquid. Density distribu-
tions predicted by the various models are compared with
available results from computer simulation.'>'®

. THEORY

In all that follows, it is assumed that the intermolecular
potential ®(r) can be divided into a purely hard-sphere po-
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tential and an attractive potential:

@ (r) = P"(r) + P*(r), (2.1)
where
(I)hs(r) = 00, |r| <d’
—o, |rod, (2.2)

and d is the effective hard-sphere diameter.

The attractive part of the potential, ®*“ (r), is taken to
be bounded and constant for |r| < d; for |r|>d it is by con-
struction equal to the total intermolecular potential ®(r).

A. Free energy density functional theory

With the intermolecular potential defined as in Eq.
(2.1), the classical Helmholz free energy F can be expressed
as

F=F"™ + AF™, (2.3)

where F™ is the free energy of a hard-sphere reference fluid
having the density distribution n(r), and AF *"* is the rever-
sible work required to turn on all the attractive interactions
without changing the density distribution.

In all the models studied here, it is assumed that AF "
can be estimated from the mean-field approximation, viz.,

AF™ = % J f n(r)n(r)g(rr)Y®* (v —r'|)d3rd?r,
(2.4)

where n(r) is the particle number density at position r and

g(r,r’) is the pair correlation function. In applying the mod-

els, we simplify the evaluation of Eq. (2.4) by introducing
the structureless fluid approximation:

g(rr') =0, |[r—1r'|<d,
=1, |r—r|>d

The free energy of the hard-sphere reference fluid is
composed of a contribution arising from any external poten-

tials acting on the fluid, an ideal gas piece, and an excess part,
the latter accounting for departures from ideal gas behavior:

(2.5)

Fhs =Fexl +Fideal +Fexcess. (26)

The excess hard-sphere free energy, F “*°***, which has a
major influence on the molecular structuring of the fluid, is
not in general known. The external potential part and the
ideal gas part of the free energy are

Fe"‘=fn(r)ue"‘(r)d3r 2.7)

and

Fidealszfn(r)unn(r) — 11d%r 4+ Nu'(T), (2.8)

where 4™ (r) is the external potential acting on a fluid parti-
cle at position r, k is Boltzmann’s constant, T'is the tempera-
ture, and u' (T) accounts for internal degrees of freedom of
the molecules of the ideal gas. Because u' ( T) is related only
to the datum of the chemical potential, we suppress it in what
follows.

The equilibrium density distribution is that which mini-
mizes the free energy subject to conservation of particles.'”

Equivalently, the equilibrium density distribution is an un-
constrained minimum of the grand potential {) where

Q=F—pfn(r)d3r. (2.9)
Here, u is the chemical potential [relative to the datum
1" ()] of the fluid. The equilibrium density profile is thus a
solution to the following Euler-Lagrange equation for the
minimization of Q:

oF

= . 2.10
on(r) ( )

u

The direct correlation function c(r,r’) is also directly
related to the Helmholtz free energy:
_ 52[1;'_ Fideal] _ _ 52‘Fexcess
kTén(r)on(r') kTén(r)bn(r")

.(2.11)

c(rr') =

1. Helmholiz free energy: The genéri¢c model

Using one-dimensional hard-rod theory as an intuitive
guide, Percus has defined a generic free energy functional for
inhomogeneous hard-sphere fluids.'® The free energy func-
tional is built around an excess free energy that is a func-
tional of two “coarse-grained” densities, 17 (r) and 7" (r),
which themselves are functionals of the local density distri-
bution n(r). His formula for the excess free energy is

Fexcess=J"—l(r)yo[’—lr(r)]d:&r, (212)

where # ,(n) is the excess free energy per particle of a homo-
geneous hard-sphere reference fluid of density .

The coarse-grained densities 7#° (r) and n” (r) are spa-
tial averages of the local density over a small domain. Each
coarse-grained density is defined by a weighting function
which, in the most general case, is an explicit function of
relative position and a functional of the density distribution:

r't"(r)sfa(r—r’;{n})n(r')d3r’, (2.13)

n(r) EJ r(r=r;{nHHn(r')d>?r. (2.14)

In homogeneous fluid, the local density is independent
of position. In this case, each coarse-grained density reduces
to the bulk density. This requires that the weighting func-
tions be normalized at any given constant density, i.e.,

fa(r—r’;n)a”r’=f¢(r—r’;n)d3r’= 1. (2.15)

The general expression for the excess hard-sphere free
energy, Eq. (2.12), can be used to construct a generic free
energy density functional, applicable to particles interacting
with an intermolecular potential of the form given in Eq.
(2.1). Reassembling the total Helmholtz free energy from
the contributions given above [Egs. (2.4), (2.7), (2.8), and
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(2.12)] we obtain

F=fn(r)ue*‘(r)d3r+ kan(r)[ln n(r) — 1)d3r

+jﬁ”(r)?o[ﬁ’(r)]d3r (2.16)

+—;—ffn(r)n(r')¢°“(|r —r'|)d3rd’r,

where we have redefined the attractive potential to be
P = 0 when |r — r'| < d, by virtue of the structureless flu-
id approximation used in AF>".

The corresponding chemical potential, according to Eq.
(2.10), is
on(r’)

- ext =kT1
p—u(r) nn(r) + Sn(n)

Folu(r)]d?r

6ﬁf(r,) =0 W\ G5 [T ! 3.0
+f——6n(r) ne(e)Filn () d3r

+fn(r’)¢““(|r—r’|)d3r’, 2.17)
where 6n(r’')/6n(r) is the functional derivative of the
coarse-grained density (#” or #") with respect to the local
density. ¢ (n) is the derivative of % ,(n) with respect to
density.

To complete the theory, the exact forms of the weighting
functions o and 7 must be established. Also, the excess free
energy per particle of the homogeneous hard-sphere refer-
ence fluid .# ;, must be specified. Then, for a given chemical
potential, temperature, external potential, and intermolecu-
lar potential, the equilibrium density distribution is a solu-
tion of Eq. (2.17).

The assignment of weighting functions generates differ-
ent model density functionals, such as the van der Waals
model, the generalized van der Waals model, etc. These are
described in what follows. Specific versions of each model
are generated by the equation of state used to determine the
excess free energy of the homogeneous hard-sphere refer-
ence fluid.

One of the simplest hard-sphere equations of state that
can be used to generate the thermodynamic properties of the
hard-sphere reference fluid is the Clausius equation of state:

P& =kTn/(1— nb), (2.18)

where P (* is the pressure of the hard-sphere fluid and b is the
excluded volume per particle. The excess hard-sphere free
energy per particle derived from this equation of state is

(2.19)

1
Fo(n) = kT1 )
o) n(l——nb

Alternatively, the Carnahan/Starling equation'® is
known to be quite accurate for hard-sphere fluids. It is given
by

2 3 3
preojrltyty—y - _mnd’ (2.20)
(I—y)’ 6
The corresponding excess free energy per particle is
Foln) = k24 =3 (2.21)

(1—»? "~

The equation of state of homogeneous fluid dictated by
the generic free energy functional given in Eq. (2.16) is inde-
pendent of the choice of weighting functions. The pressure of
homogeneous fluid is composed of a hard-sphere pressure,
given by the equation of state used to model the hard-sphere
reference fluid, and a mean-field attractive contribution:

2
P0=P35+£2—J¢“"(]r|)d3r. (2.22)
The chemical potential (relative to the datum g') in

homogeneous fluid given by this mean-field equation of state
is

,u=kT1nn+70(n) 4+ nF{(n) +nj¢“"(|r|)d3r.
(2.23)

Equations (2.22) and (2.23) rest on the earlier assignment:
D* (|r|) =0, for |r| <d.

An important point is that the particle number density
n(r) can be interpreted as the probability of finding the cen-
ter of a particle at position r. In homogeneous fluid, this
density is a constant, independent of position. For a given
equation of state, the homogeneous fluid density can be no
larger than the density at close packing, i.e., the density at
which the pressure diverges. A mean-field equation of state,
Eq. (2.22), based on the Clausius hard-sphere equation of
state, Eq. (2.18), cannot predict a homogeneous density
greater than 1/b, where b is the excluded volume per parti-
cle. Equations of state based on the Carnahan/Starling hard-
sphere equation of state cannot predict a homogeneous den-
sity greater than (6/7)d —°.

In an inhomogeneous fluid, the local density can take on
values much higher than the close-packed limit. In other
words, the probability that the center of a particle is located
at certain positions can be very high, approaching infinity in
a perfectly ordered crystalline material. According to the
generic free energy functional, Eq. (2.16), the close-packed
density limit in inhomogeneous fluid must be obeyed not by
the local density, but rather by the coarse-grained density
A" (r).

2. The van der Waals mode/

The original free energy density functional model of van
der Waals' is a particular case of the generic free energy
functional given by Eq. (2.16). In this particular case, the
weighting functions are

o(r) =7(r)=6(r), (2.24)
where 8(r) is the Dirac delta function. Thus, both coarse-
grained densities 77 (r) and 7 (r) reduce to the local density
n(r). Hence, the free energy, as well as the chemical poten-

tial, depends only on the local point densities.
The chemical potential is given by

u—u™(r) =kTlnn(r) + F,lnr)] +n()Filn(r)]
+fn(r')¢a“(|r—r’|)d3ﬂ. (2.25)

Because it neglects the nonlocal contributions arising from
the finite of size of the particles, the van der Waals model
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fails to predict, even qualitatively, the structure of fluids next
to or between solid surfaces. Thus, we shall not consider it
further.

3. The generalized van der Waals model

The generalized van der Waals model of Nordholm and
co-workers’®?! was the first free energy density functional
model to incorporate a nonlocal coarse-grained density. This
model can be cast in the generalized form given by Eq.
(2.16). The weighting functions of the generalized van der
Waals model are

o(r)=6(r), (2.26)
3
7(r)=H(d — |r| )/(4—”3"—) , (2.27)
where H(r) is the Heaviside step function:
H(r)=1, rx0,
—0, r<0. (2.28)

The range of the nonlocal weighting function 7 is the
effective hard-sphere diameter d. The coarse-grained density
1" (r) represents the average density in a sphere of radius d
about r; 19 (r) is equal to the local density #(r).

The chemical potential is given by

4 —u™(r) =kTInn(r) + F,[7°(r)]

+JH(a'— r—r'Dn(")F LA (') ]1d>

+fn(r’)¢“"(|r—r’|)d3r’. (2.29)

Specific versions of the generalized van der Waals model
are based on different equations of state for the hard-sphere
reference fluid. In their original development, Nordholm ez
al.?° used the Clausius expression for %, Eq. (2.19), with
the excluded volume parameter b equal to d >. They also put
forward®® a Clausius version of the generalized van der
Waals model with a density dependent excluded volume pa-
rameter which is interpolated between the low density limit

J

1

gyt =kT1 -
s — u(r) nn(r)+47r(d/2)2

H(Z_ r— r’[) A(r)F (AT (r)1d % + J n(r)®*(|r —r'|)d>r.

1
T @@y f (2

8. The Tarazona model

The free energy theories described thus far are built
upon nonlocal densities defined by weighting functions that
depend on relative position alone. Another approach devel-
oped by Tarazona, is to incorporate a nonlocal density de-
fined by a density weighted spatial average of the local den-
sity. Although others have also developed free energy
functionals based on this premise,?”*® we examine only the

2425

of §7d * and the high density cubic close-packed limit of 4 >.
Tarazona and co-workers,?* as well as Hooper and Nord-
holm,? have developed a version of the generalized van der
Waals model that is based on the Carnahan/Starling equa-
tion of state.

It turns out that at some chemical potentials Eq. (2.29)
admits for the Clausius formula for .% ; solutions that have
regions of negative density.?* These are, of course, nonphysi-
cal solutions. The alternative to finding an equilibrium solu-
tion from the generalized van der Waals model is to find the
density distribution that minimizes Eq. (2.9) subject to the
constraint n(x) >0. We do not pursue this approach here. In
what follows we present only the unconstrained solutions to

Eq. (2.29).

4. The generalized hard-rod model

The density distribution of one-dimensional hard rods
in an external potential is known'# and can be solved for
analytically.?® Percus'® has shown that the solution of Eq.
(2.17), with ®*"* =0, is the exact density distribution of
one-dimensional hard rods when the weighting functions are

o(x)=6 (121— — |x[)/2,
7(x)=H (% - |x|)/d

Robledo and Varea,'? and also Fischer and Heinbuch,'?
have developed a free energy density functional model based
on weighting functions which are generalizations of these
one-dimensional weighting functions to three dimensions.
This model, termed here the generalized hard-rod model, is
characterized by the following weighting functions, o(r)
and 7(r):

(2.30)

(2.31)

fa (Ir |- %) FolA(r)1d>r

o(r)=6 (%— |r|)/[41r (-‘—21—)2] , (2.32)
d 47 (d Y}
=H|{—— — (=} 1. 2.33
ro=i(g- ) /[5(5)] 23
The chemical potential g is thus
(2.34)

one proposed by Tarazona; the others make computation
more complicated.

Tarazona’s free energy functional can be cast in the gen-
eral form given by Eq. (2.16). Like its predecessor, the gen-
eralized van der Waals model, Tarazona’s free energy func-
tional is based on only one nonlocal density 7" (r). The first
weighting function o(r) is equal to the Dirac delta function,
so that 7% (r) reduces to the local density n(r). However,
unlike the free energy models discussed so far, the nonlocal
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weighting function 7 is a functional of the density distribu-
tion. Specifically #” (r) is expressed in terms of a weighting
function which depends explicitly on relative position and
on A" (r), and is given by the following integral equation:

AT(r) =f7' [r—r;a(r)]n(r')d>r. (2.35)

Tarazona expresses the density dependent weighting
function as a series in the nonlocal density; the series is in
practice truncated after the third term:

7lr =77 (r) ] =wo(r — ¥'|) + @, (Jr — r'|)7"(r)

+ o,(|r —r')A"(r)2 (2.36)
With 7 defined in this fashion, 77 (r) can be expressed in
terms of three other nonlocal densities, 7,(r), #,(r), and
7i,(r), that are defined by density-independent weighting
functions, wy(r), @,(r), and w,(r), respectively:

AT(r)=n,(r) + A, (r)A"(r) + A,(r)A"(r)? 2.37)

|

Vanderlick, Scriven, and Davis: Confined fluids

where
ﬁ,(r)zfcoi(ir—r’{)n(r')d%’, i=0,12. (2.38)

The density-independent weighting functions have the prop-
erties

fa),.(|r|)d3r= 1, i=0,

= 0, i= 1,2
which follow from the normalization condition of 7, Eq.
(2.15).

The criterion used to specify the exact forms of the spa-
tial weighting functions o, (r) is given by requiring close
agreement, over a range of densities, of the direct correlation
function calculated from Eq. (2.11) with that predicted by
the Percus—Yevick approximation for a homogeneous hard-
sphere fluid. To accomplish this, Tarazona prescribes alge-
braic expressions for the density-independent weighting
functions (presented without typographical errors in Ref.
29):

(2.39)

(3
wo(|r|)=(4ﬂd3), Ir| <d, (2.40a)
=0, Ir|>d,
o,(Jr|) =0.475 — 0.648 ( I ) +0.113 ( ) vl <d,
Eo.zss(,dl) 0924+O764( ) 0187(|;|)2, d<|r|>2d, (2.40b)
r
EO |r|>2d)
51Td Ir| ) ( Ir| )2]
= 6—12 (L) + 5 (LEL)
w(|r])= [ (d +3( r| <4, (2.40¢)
Eo, Ir|>d.

Tarazona obtained these weighting functions for a free ener-
gy model based on the Carnahan/Starling hard-sphere equa-
tion of state, Eq. (2.20), and so they are consistent only with
that particular version of the model. Nevertheless these
same expressions can be used with the Tarazona model
based on the Clausius hard-sphere equation of state, Eq.
(2.19); this we do here with the excluded volume equal tod 3,
The chemical potential is given by

p—u™(r)y =kTInn(r) + F,[7"(r)]
+f SR (r) (e F o [RT(e') |d >
on(r)
+fn(r')<l>“"(lr—r’|)d3r (2.41)
where
on'(r) _ 7l — a7 (r')] . (2.42)
Sn(r) 1 — 7, (') — 27,(r" YA (r')

The coarse-grained density #” (r) is a root of the qua-
dratic equation, Eq. (2.37). The physically appropriate root
is
[1—7,(0)] = {[1 = 7,(r)]> — 47h,(r)7A,(r) }' 2

2n,(r)

A (r) =
(2.43)

When the density does not vary greatly over length
scales of order 4, the hard-sphere diameter, the density-de-
pendent weighting function 7 reduces to the density-inde-
pendent weighting function &,. Furthermore, this weighting
function is the same as the one used in the generalized van
der Waals model.

B. Yvon-Born-Green theory: The Fischer-Methfessel
model

The Yvon—-Born-Green (YBG) equation relates the lo-
cal number density n(r) to the pair correlation function
g(r,r’'). With the intermolecular potential defined as in Eq.
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(2.1), the YBG equation becomes®*!
kTVinn(r) = — Vu™(r)

— f n(r')g(r,x' )V (r —r'|)d >

- kTJ- n(r')g(r,r)Ve(jr —r'|)d>r.
(2.44)

Following the development of Fischer and Methfessel, "
we make two simplifying approximations. First, as with the
free energy models, the structureless fluid approximation
can be used in evaluating the attractive force average. Next,
the correlation function in the second integral can be re-
placed by the correlation function of a purely hard-sphere
reference fluid, g(r,r') ~g™ (r,r'). With these simplifying
approximations, the YBG equation can be rearranged to

kT Vinn(r)

- Vuext(r) . V f n(rl)q)at!( |l' _ rll)dSrl

kT [ nrrgm sl —r =

x =8 sie —v| — d)d?r.
Ir—r'|
The pair correlation function of the hard-sphere reference
system is evaluated only at contact, i.e., at [r — r'| =d.

The pair correlation function for an inhomogeneous sys-
tem of hard spheres cannot be expressed in closed form. It
can be written in terms of three-body correlations through
the Born-Green-Y von hierarchy,?*>° but if a usable result is
to be obtained, this hierarchy of equations must eventually
be “closed” at the (n — 1)st level by an approximation of the
nth correlation function.

In the Fischer—Methfessel approximation, the inhomo-
geneous pair correlation function is replaced by a pair corre-
lation function of homogeneous fluid, evaluated at a coarse-
grained density 7(r):

(2.46)

For the coarse-grained density 7 (r), they chose a spatial
average of the local density over a sphere of diameter equal
to the hard-sphere diameter d centered at the point of con-
tact, (r,r')/2:

(2.45)

ﬁ(r)sja)(;r_r'j)n(r')dw, (2.47)

where

o(|r - r’])EH(%— [r—r’|)/[4Tﬂ- (—%)3] . (2.48)

Thus, 7i(r) is the same as the coarse-grained density 7" (r)
introduced in the generalized hard-rod model.

The homogeneous pair correlation function of hard
spheres, evaluated at contact, is needed to complete the
YBG theory. Fischer and Methfessel'! used the Carnahan/
Starling hard-sphere equation of state to approximate the

homogeneous pair correlation function. The result is

1— (7/12)nd >
*(d,n) = .
& (dm) [1— (#/6)nd?]?
To recover the Clausius equation of state, one uses a hard-
sphere pair correlation function of the form

3
2 (d,n) = 2b/(4md"/3)
1—nb
where b is the excluded volume per particle. In analogy with
free energy models based on the Clausius hard-sphere equa-
tion of state, we set b = d ? in the calculations presented be-
low.

(2.49)

, (2.50)

l1l. ONE-DIMENSIONAL HARD RODS IN AN EXTERNAL
POTENTIAL

A benchmark for comparison of all theories is the pre-
diction of the density distribution of one-dimensional hard
rods in an external potential. The density distribution and
thermodynamic properties of this system are known rigor-
ously,'* essentially because excluded volume effects in one
dimension can be exactly determined.

The excess free energy per particle of a homogeneous
system of hard rods is

)
1—nd/’

By construction, the generalized hard-rod model re-
duces in one-dimension to the rigorous free energy density
functional of hard rods.

Davis has shown®? that the YBG equation with the
Fischer-Methfessel approximation of the pair correlation
function is also exact in one dimension.

The generalized van der Waals theory is not exact in one
dimension. In one dimension, the three-dimensional weight-
ing functions given by Egs. (2.26) and (2.27) become

a(x) = 6(x)
and
7(x) = H(d - |x])/(24d).

Fo(n)=len( (3.1)

3.2)

(3.3)

IV. APPLICATION TO FLUIDS CONFINED IN SLIT
PORES

The theories presented in Sec. II can be used to predict
the density distribution of fluid confined between planar,
smooth solid surfaces of infinite extent, i.e., fluid confined in
aslit pore. Density distributions are calculated here for both
hard-sphere and Lennard-Jones fluids. Results obtained
from the various models (excluding the van der Waals mod-
el which cannot predict structure induced by excluded vol-
ume effects) are compared; they are also held up against
results from computer simulations of confined fluids.'*'¢

The theories are compared on two levels. The first is
based on the form of the coarse-graining weighting func-
tions. In free energy theory, the choice of weighting func-
tions identifies particular model functionals. The models are
also compared on the basis of the equation of state used to
predict the thermodynamic properties of the hard-sphere
reference fluid. The choice of equation of state identifies par-
ticular versions of each model.
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A. Governing equations

The density of fluid confined in a slit pore varies only in
the direction normal to the solid surfaces. Hence, the gov-
erning equations from each model can be reduced to one-
dimensional form by integrating over directions parallel to
the solid surfaces.

The chemical potential, Eq. (2.17), derived from the
generic free energy functional of Sec. IT A 1 becomes

u— uext(x)
on’(x") G [BT( ’
=lenn(x)+f S (x) F IR (x)1dx
J 65’1 ((x)) n?(x")FiaT(x')1dx'
+fn(x)<l>i“(lx—x'l)dx', (4.1)
where
q>;"(|x|)szq>a"(|r|)dydz. (4.2)

The coarse-grained densities 77 (x) and 7" (x) are given by

where the reduced weighting functions ¢, and 7, are de-
fined by

o, (x;{n}) Efja(r;{n})dy dz, (4.5)

7. (x;{n}) EJ J‘ r(r;{n})dy dz. (4.6)

The reduced weighting functions corresponding to the
free energy models discussed in Sec. II are the generalized
van der Waals model:

o, (x) = 8(x),

T (x) = 433 H(d — |x|)(d* —x%); (4.7)
generalized hard-rod model:

7. (x) =5H(—‘;— - le),

o falE-) (@

Tarazona model:

o, (x—x";{n}) =6(x—x"),
n’(x) =f0', (x —x;{n})n(x")dx', 4.3) T (x = x'{{n}) = 0y (x —x") + @, (x —x")A"(x)
— XA ()% a.
r‘t’(x):fﬁ(x—X';{n})n(x')dx', (4.4) T+ oa, (X =X 49
where
j
@, (x) = 423 — [xD(d* = x%, (4.10a)
o, (x) = HQ2d — |x)H(jx| — d)2m [o.zssd(zd—|x|)—(°—9zi) (4d” — |x|* )—|—(03764)(8d3 1xP)
—(0’1827)(1&14—|x|“)]+H(d—|x|)2 [0475 @ — ] )_0648 @ — 1x)
4d 3d
L0 e
4d2 d*—|x|*) +d? [0 288 — — (0 924) +— (0.764) — — (0 187)” (4.10b)
|
3
05 (x) = H(d — |x]) 107%d [3(d2 — IxP) where
144 _ 6 d
4 5 PO =T H(7“'x_x1')
. 3_ 3 - 4___ 4
d(d |x|)+4d2(d |x]*) e
X [(———) —(x —-—x’)2] n{x')dx'. (4.12)
(4.10¢) 2

When density varies only in the x direction, the Yvon-
Born-Green equation, Eq. (2.45), can be integrated from 0
to x to obtain

K —u™(x) =kTlnn(x) +fn(x’)<b“"(|x—x’!)dx'
X +d

+ 21rka dx” f ax' x'n(x' 4+ x")
(4] —d

Xgola(x" + 3x) 1, (4.11)

The quantity « is a constant of integration and is a thermody-
namic field variable. Physically, it represents a mechanical
potential of the system.

Confined fluid can of course be in equilibrium with bulk
fluid which acts as a reservoir supplying particles to the slit-
pore. Such bulk fluid is necessarily at the same chemical
potential as the confined fluid. However, the normal stress
exerted by the confined fluid on the solid walls is not in
general equal to the bulk pressure of the reservoir fluid.

Whereas the free energy theories yield an equation de-
scribing the density distribution at chemical equilibrium, the
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YBG equation is an expression of mechanical equilibrium in
the fluid.**> As such, the chemical potential is not known in
the YBG formalism. Thus free energy models are thus more
naturally applicable to grand canonical systems, wherein a
bulk reservoir fluid, or equivalently a chemical potential, can
be identified. Typical applications of this kind are colloidal
interactions in dispersed systems, and adsorption of fluid
components in a porous medium.

The basis of comparison we use to examine both the
YBG and free energy models is the prediction of the density
distribution at a specified mean pore density. The mean pore
density, 7., of confined fluid in a slit-pore of width L with
solid walls located at + L /2 is

L/2

Poore 7)., n(x)dx.
When applying free energy models to confined fluid at a
specified mean pore density, the chemical potential x be-
comes an additional unknown and must be solved for. Simi-
larly, when the YBG model is applied to such systems, the
mechanical potential x must be solved for.

(4.13)

B. Computational method

Equilibrium density distributions predicted by the free
energy models are solutions of Eq. (4.1). Inputs for each
particular model are the forms of the weighting functions
and the excess hard-sphere free energy per particle as deter-
mined from the equation of state used to model the hard-
sphere reference fluid.

The density distributions predicted by the YBG theory
are solutions of Eq. (4.11). The homogeneous hard-sphere
pair correlation function, evaluated at contact, must be
specified from the equation of state which is used to model
the hard-sphere reference fluid.

Additional inputs required of all models are the fluid—
fluid and solid—fluid potentials which govern the behavior of
the system to be investigated. The hard-sphere potential
does not appear explicitly in any of the governing equations
for fluid density. On the other hand, all models presented
treat the attractive interactions by the mean-field approach.

In both the free energy and YBG models, the effect of
the solid surfaces at x = + L /2 is treated as an external
potential acting on the fluid. The total external potential is
the sum of the individual potentials exerted by each wall:

U (X) = Uy, (£ — x) + Uy (—[i + x) . (4.14)

2 2

To facilitate solving the governing equations of fluid

density, n(x) was replaced by the variable ¥(x),

Y(x)=n(x)explu™(x)/kT], (4.15)

because this is a more slowly varying function of x in the
interval — L /2 <x <L /2. The domain of interest, — L /
2 <x <L /2, was discretized uniformly and trapezoidal rule
was used to evaluate the integrals. The governing equation of
fluid density becomes a system of nonlinear, coupled, alge-
braic equations for the nodal values of Y. We chose Newton’s
method to solve for the unknowns; it is probably the most
efficient method available. We employed a mesh size of
0.0125d in the calculations reported here.

TABLE I. Units used in computations and presentation of results.

Quantity Units
Distance d
Wall separation d
Density d—?
Pressure kTd?
Particle-wall diameter o, d
Particle—particle energy € kT
Particle-wall energy €, kT
Chemical potential u kT
Mechanical potential « kT

The units used for the quantities discussed in subsequent
sections are given in Table I. The computer program used for
all the models discussed here was written in FORTRAN, and
an interactive version of the code is listed elsewhere.>*

C. Hard-sphere fluid confined between hard walls

A simple, yet telling, standard of comparison of all mod-
els is the prediction of the density distribution of hard
spheres confined between hard walls. This comparison re-
veals the ability of each model to predict structure induced
by excluded volume effects.

The fluid particles interact solely with a hard-sphere
potential, given by Eq. (2.2). The external potential due to
hard walls located at 4+ L /2 is given by

U (X) = oo |x|>£—-i,

ext b 2 2
(4.16)

=0 |x|<£_i

- 2 2’

where d is the effective hard-sphere diameter.

We use the models discussed in Sec. II to predict the
density distribution of a hard-sphere fluid confined between
hard walls. To compare with the Monte Carlo simulation
results of Snook and Henderson,'®> we calculate the density
distribution of fluid confined between hard walls separated a
distance L = 9.74d, at a mean pore density of 0.89784 ~>.
For this density, values of the field variables, i.e., chemical
potential in the free energy approach and the mechanical
potential in the YBG approach, are given in Table II for each
model fluid.

TABLE II. Théermodynamic parameters for hard-sphere fluid between
walls separated 9.74d. The mean pore density is 0.897d ~* for all fluids com-
pared.

Model pork Py
GVDW-Clausius 9.77 71.73
GVDW-Carnahan/Starling 11.12 7.32
GHR-Clausius 19.50 16.54
GHR-Carnahan/Starling 15.81 11.29
TRZ-Clausius 14.95 12.35
TRZ—-Carnahan/Starling 15.67 11.11
YBG-Clausius 2.85 17.28
YBG-Carnahan/Starling 2.39 10.88
Monte Carlo (Ref. 15) oee 10.30
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FIG. 1. Comparison of density
u profiles predicted by the general-
ized van der Waals model with
. Monte Carlo simulation (Ref. 15)
of confined hard-sphere fluid.
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A characteristic feature of the density profile of fluid
confined between solid surfaces is the average layer spacing
of the density distribution. In a confined fluid, the layer spac-
ing is determined by a competition between the intrinsic
spacing characteristic of the semiconfined fluid, i.e., fluid
next to a single solid surface, and the packing and symmetry
constraints induced by the presence of a second confining
surface. Thus, the layer spacing predicted by a given model
can vary with position in the pore, and is, in general, a func-
tion of pore width. Because walls spaced a distance 9.74d
interact scarcely at all, the layer spacing of the confined fluid
near the walls is almost the same as the intrinsic layer spac-
ing of the semiconfined fluid. For sake of comparison, we
can estimate for each model the intrinsic layer spacing from
the average spacing between the first three density layers.
The Monte Carlo simulation predicts an average layer spac-
ing of 0.944.

When fluid is confined between hard walls, the normal
pressure in the pore is related to the magnitude of the density
at each wall:

Py = kTn(0). (4.17)

At the given mean pore density, the Monte Carlo simulation
predicts a normal pressure in the pore of 10.3 k7d ~3. The
normal pressure predicted by each model is also listed in
Table II. Because the walls are essentially noninteracting,
the normal pressure of the confined fluid is not significantly
different from the pressure of bulk fluid at the prescribed
field variables.

Density profiles predicted by the, generalized van der
Waals model are compared with the Monte Carlo results in
Fig. 1; the density distribution from — L /2 to O is that pre-
dicted by the Clausius version of the model and the density
distribution from O to L /2 is that predicted by the Carna-
han/Starling version of the model. Both versions of the gen-
eralized van der Waals model predict a layer spacing that is

consistently greater than one particle diameter throughout
the slit pore. The Clausius version predicts an average layer
spacing of 1.14d (based on the first three layers); the Carna-
han/Starling version predicts a similar average spacing of
1.12d. Both versions of the model underpredict the pressure
in the pore, by 25% for the Clausius fluid and by 29% for the
Carnahan/Starling fluid.

As mentioned previously, when the Clausius expression
for F ,(n) is used, in the Euler-Lagrange equation of the
generalized van der Waals model, regions of negative density
are predicted. For this particular choice of % ,(n), the gov-
erning equation, Eq. (4.1), can be rewritten as '

h(x) = e[u— #X(x)]
Xexp[—if [d? — (x —x")?]
4 Jix_x|<d

Xh(x')dx’} , (4.18)

where
n(x)

[1—-7(x)d?]
This transformation reveals that a negative density at any
position x is coupled with a coarse-grained density at the
same x that is greater than d —3, the close-packed limit. The
function A(x), however, is well-behaved at all values of
chemical potential.?*

When the Carnahan/Starling expression for % ;(n) is
used, the generalized van der Waals model predicts density
distributions that are everywhere nonnegative. In this case,
however, the density distribution becomes stratified at high
mean pore density, and this leads to density peaks character-
istic of liquid crystals, as shown in Fig. 1. These sharp peaks
persist uniformly through the fluid, even when the solid sep-
aration is increased to L = 204 at constant chemical poten-

h(x)= (4.19)
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FIG. 2. Comparison of density
profiles predicted by the Tara-
zona model with Monte Carlo
simulation (Ref. 15) of confined
hard-sphere fluid.
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tial. This is clearly in disagreement with the simulation re-
sults which predict that the density layering is already weak
in the center of the pore at a separation of 9.744.

In summary, the Euler—Lagrange equation of the gener-
alized van der Waals model, although the simplest nonlocal
free energy functional, does not predict physically realistic
structure at high mean pore densities. Furthermore, the
qualitative structure of the predicted density profiles is
strongly dependent on the equation of state used to specify
the excess hard-sphere free energy. The negative densities
could be avoided by hunting the minimum of Q under the
physical constraint 7(x) >O0.

The Tarazona model, which represents a systematic im-

GENERALIZED HARD-ROD

provement on the generalized van der Waals model, admits
no unphysical solutions at high mean pore density. The den-
sity profiles predicted by Clausius and Carnahan/Starling
versions of the model are shown in Fig. 2. Of all modelis
considered, the Tarazona model predicts density profiles in
closest agreement with the simulation results. Density pro-
files predicted by the Tarazona model do not depend strong-
ly on the equation of state chosen to model the hard-sphere
reference fluid. Both versions of the model predict an aver-
age layer spacing of 0.994, just slightly larger than the layer
spacing predicted by the simulation. The only major differ-
ence between the two versions of the model is the normal
pressure in the pore: The Carnahan/Starling version pre-

MODEL

FIG. 3. Comparison of density
] profiles predicted by the general-
ized hard-rod model with Monte
Carlo simulation (Ref. 15) of
confined hard-sphere fluid.
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dicts a normal pressure in closer agreement with the simula-
tion result (8% high) while the Clausius version overpre-
dicts the pressure by 20%.

Density profiles predicted by the Clausius and Carna-
han/Starling versions of the generalized hard-rod model are
shown in Fig. 3. Both versions of the model predict density
profiles that are physically acceptable, but the profiles are
less structured than the density profile observed in the simu-
lation. Both versions of the model also predict average layer
spacings that are smaller than the simulation result. The
Clausius version predicts an average spacing of 0.74d; the
Carnahan/Starling version predicts an average spacing of
0.81d, in closer agreement with the simulation. The normal
pressure predicted by the Carnahan/Starling version is also
in much closer agreement with the simulation result (10%
high) than the pressure predicted by the Clausius version of
the model (61% high). The density profile of the Clausius
fluid is more pronounced and is longer ranged than the den-
sity profile of the Carnahan/Starling fluid, owing to the rela-
tive difference in pressure.

Density profiles predicted by the Clausius and Carna-
han/Starling versions of the YBG equation with the
Fischer-Methfessel approximation are shown in Fig. 4. The
average layer spacing predicted by the YBG model depends
strongly on the equation of state use to model the hard-
sphere reference fluid. The average layer spacing predicted
by the Clausius version of the YBG model is 0.73d, which is
smaller than the simulation result and similar to that pre-
dicted by the Clausius version of the %Seneralized hard-rod
model. On the other hand, the average spacing predicted by
the Carnahan/Starling version of the YBG model is 0.984,
in close agreement with the simulation result. As with all
other models considered, the normal pressure of the con-
fined Clausius fluid is substantially higher (68% higher than
the simulation) than that of the confined Carnahan/Starling

fluid (only 6% higher than the simulation). Both versions of
the YBG model are poorer than the Tarazona free energy
model in predicting the layered structures observed in the:
computer simulation.

The shape of the density profile predicted by the Clau-
sius version of the YBG model differs qualitatively from
those predicted by all the other models considered. This ver-
sion of the YBG model predicts a region of low density at
approximately 1d from each hard wall that is composed of
two shallow local minima. This feature does not appear in
the Carnahan/Starling version of the YBG model.

In summary, of all models considered the Carnahan/
Starling version of the Tarazona model gives the best overall
performance. This model predicts density profiles in closest
agreement with those observed in the Monte Carlo simula-
tion. Furthermore, the normal pressure and average layer
spacing estimated by the model are in good agreement with
the simulation results. While the Carnahan/Starling version
of the YBG model predicts normal pressure and average
layer spacing in closest agreement with the simulation re-
sults, this model underestimates the degree of density layer-
ing that is observed in the simulation.

D. Lennard-Jones fluid confined between Lennard-
Jones walls

The models presented in Sec. II are now used to predict
the density distribution of Lennard-Jones fluid particles con-
fined between attractive walls, each exerting a Lennard-
Jones 10-4-3 potential. Here the models are examined to see
how well the predicted profiles agree with those obtained
from the molecular dynamics simulation of Magda ez al.'®

The external potential exerted on the fluid by Lennard-
Jones 10-4-3 walls located at + L /2 is given by Eq. (4.14)
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TABLE III. Thermodynamic parameters for Lennard-Jones fluid between
Lennard-Jones walls. The mean pore density at L = 3dis 0.5297d ~3and at
L=4ditis0.4811d —3.

Model L pore Py
GVDW-Clausius 4.0 —7.40 -1.22
30 -1.73 -0.75
GVDW-Carnahan/Starling 4.0 —4.70 0.04
3.0 — 5.06 0.26
GHR-Clausius 4.0 —4.88 3.69
3.0 0.27 2.15
GHR~Carnahan/Starling 4.0 — 146 0.97
30 - 0.16 0.84
TRZ—-Clausius 4.0 —6.62 —0.96
30 —6.43 —0.35
TRZ~Carnahan/Starling 4.0 —2.99 0.16
3.0 —252 0.54
YBG-Clausius 4.0 —1.32 3.36
3.0 —-1.92 1.88
YBG-Carnahan/Starling 4.0 —3.06 0.16
3.0 —3.04 0.32
Molecular dynamics'® 40 0.38+0.1
3.0 .- 0.49 + 0.06
with
2 (o, \"°
Uan (x) = 2776:0 [—‘ ( = )
5\x
( o, )“ V207,
- - ’
x 3[x + (0.61/42)a,]?
(4.20)
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FIG. 5. Comparison of density profiles predicted by the generalized van der
Waals model with molecular dynamics simulations (Ref. 16) of confined
Lennard-Jones fluid.

where €, and o, are characteristic wall-fluid energy and
distance parameters.

The fluid particles are assumed to interact with an at-
tractive potential of the form

d 6
d(|r|) = —46(7) y |r|>d

Ir| <d (4.21)

=0,

which, after integration over the y-z plane, becomes

4
P (|x|) = — 27ed? (%) . |x|>d,

x| <d (4.22)

= —2red?,

In accordance with the thermodynamic parameters of
the simulation of Magda e al.,'® the following values were
chosen for the solid—fluid and fluid—fluid parameters used in
the models. The particle—particle interaction energy € and
the solid—-fluid interaction energy €, are taken to be 1.21 kT.
The solid—fluid distance parameter o, is equal to d. Com-
parisons are made for fluid at a mean pore density of
0.5297d 3 confined between walls separated 34, and for flu-
id at a mean pore density of 0.4811d ~2 confined between
walls separated 44. Values of the controlling field variable,
chemical potential or mechanical potential, for each model
fluid are listed in Table I11.

The normal pressure exerted by the confined fluid on
the solid walls can be calculated directly from the density
distribution. For walls with continuous potentials, the nor-
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FIG. 6. Comparison of density profiles predicted by the Tarazona model
with molecular dynamics simulations (Ref. 16) of confined Lennard-Jones
fluid.
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FIG. 7. Comparison of density profiles predicted by the generalized hard-
rod model with molecular dynamics simulations (Ref. 16) of confined Len-
nard-Jones fluid.

YVON-BORN-GREEN MODEL

YVON-BORN-GREEN MODEL ——
MOLECULAR DYNAMICS --~-----

CARNAHAN / STARLING
L=3 L=3

CLAUSIUS

401

20

-1.0 0.0 10 -1.0 0.0 1.0

POSITION, x

FIG. 8. Comparison of density profiles predicted by the Yvon-Bron—-Green
model with molecular dynamics simulations (Ref. 16) of confined Len-
nard-Jones fluid.

mal pressure is given by**
PN _ _-1_ L/2 duex[(x,)
2J-n dx
Values of P, as determined from the density distributions
are also reported in Table III.

Molecular dynamics simulation results of Magda ez al.'®
are compared with density profiles predicted by the general-
ized van der Waals model in Fig. 5, the Tarazona model in
Fig. 6, and the generalized hard-rod model in Fig. 7. Figure 8
compares the simulation results with the predictions of the
YBG model.

Both versions of the generalized van der Waals model
predict density profiles that are similar to those predicted by
the corresponding versions of the Tarazona model. The
Clausius version of each model predicts primary density
peaks adjacent to each wall that are within 2% of the simula-
tion results. At the larger pore width, both models overpre-
dict the middle density peak, by as much as 25% for the
generalized van der Waals model and 30% for the Tarazona
model.

The Carnahan/Starling versions of both models consis-
tently overpredict the magnitudes of all density peaks. At
L = 3d, the generalized van der Waals model predicts pri-
mary density peaks 20% higher than those observed in the
simulation. The Tarazona model overpredicts the height of
these peaks by 13%. At L = 4d, the generalized van der
Waals model overpredicts the primary peaks by 26% and
the middle peak by 80%. The Tarazona model does only
slightly better, overpredicting the primary peaks by 15%
and the middle peak by 74%.

Although the density profiles predicted by the Clausius
versions of both models are in better agreement with the
simulation results, the normal pressure is in both cases better
predicted by the Carnahan/Starling versions of the models
(see Table III). The disagreement between simulation and
the predictions are smallest for the Tarazona model.

At the smaller pore width, both the Clausius version of
the generalized hard-rod model and the Clausius version of
the YBG model predict density profiles that are qualitatively
different from those observed in the simulation. Both of
these models predict an intrinsic density layer spacing in a
semi-confined fluid that is significantly less than one effec-
tive hard-sphere diameter. Thus instead of the two-layered
configuration predicted by the simulation, the generalized
hard-rod Clausius model predicts a four-layered structure
while the YBG—Clausius model predicts a three-layered
structure.

At the larger pore width, the Clausius version of the
generalized hard-rod model and Clausius version of the
YBG model predict density profiles that are in qualitative
agreement with the simulation results, although both mod-
els underestimate the magnitudes of density peaks. The gen-
eralized hard-rod model underpredicts the magnitude of the
primary density peaks by as much as 20% and the middle
peak by 30%. The YBG model underestimates the primary
density peaks by 18% and the middle peak by 14%. The
pressure estimated by both the Clausius generalized hard-
rod model and the Clausius—-YBG model are in very poor
agreement with the simulation results.

n(x') dx'. (4.23)
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Unlike the Clausius versions, the Carnahan/Starling
versions of the generalized hard-rod model and the YBG
model predict density profiles in qualitative agreement with
those observed in the simulations. The generalized hard-rod
model, however, still underestimates the degree of molecular
structuring in the fluid. At L = 3d, the generalized hard-rod
model underpredicts the height of the primary density peaks
by 14%. At L =4, it underpredicts the primary density
peaks by 10% and the middle peak by 25%. On the other
hand, of all models considered, the Carnahan/Starling ver-
sion of the YBG model predicts density profiles in closest
agreement with the simulation results. The primary peaks
are within 1% of the simulation results for both L = 3d and
L = 4d. At the larger pore width, the YBG model overpre-
dicts the middle peak by only 21%. The normal pressures
predicted by the Carnahan/Starling version of the YBG
model are in much closer agreement with the simulation re-
sults than the pressures predicted by the Carnahan/Starling
version of the generalized hard-rod model.

In summary, pressures predicted by the Carnahan/
Starling versions of the models are in all cases in better agree-
ment with the simulation results than are the predictions of
the corresponding Clausius versions. Although the Carna-
han/Starling version of the Tarazona model tends to over-
predict the heights of the density peaks observed in the mo-
lecular dynamics simulations, it gives the best estimates of
pressure. The Carnahan/Starling version of the YBG model
predicts density profiles in closest agreement with the simu-
lations and pressures that are almost as good as those pre-
dicted by the Tarazona model.

V. SUMMARY

Several approximate density functional models of inho-
mogeneous fluid have been examined. Each model attempts
to account for the nonlocal effects arising from the finite size
of fluid particles by incorporating coarse-grained densities.
These coarse-grained densities are functionals of the local
density distribution. They are most generally defined as
weighted averages of the local density in a domain of size
comparable to the range of molecular interactions. The non-
local weighting functions used to define the coarse-grained
densities distinguish the various models. All models require
as input the equation of state of a homogeneous fluid evalu-
ated at a local coarse-grained density. Two mean field equa-
tions of state were used, one based on a Carnahan/Starling
hard-sphere reference fluid and the other based on a Clau-
sius hard-sphere reference fluid.

The generalized van der Waals model is the simplest free
energy density functional model that incorporates a coarse-
grained density. However, this model fails to predict physi-
cally reasonable density distributions at high mean pore den-
sity, regardless of the equation of state used to model the
hard-sphere reference fluid. The nonlocal weighting func-
tion employed in the generalized van der Waals model is
generated as the lowest order term in the series expansion
used to construct the nonlocal weighting function employed
in the Tarazona Model. The Tarazona model, which keeps
two more terms in the expansion, admits no unphysical solu-
tions at high mean pore density. As would be expected, den-

sity profiles predicted by the generalized van der Waals
model are in close agreement with those predicted by the
Tarazona model at small mean pore densities, although the
prediction of pressure is not as good.

The Tarazona model based on the Carnahan/Starling
equation of state gives the best overall performance. This
model predicts pressures in close agreement with computer
simulation for both hard-sphere and Lennard-Jones con-
fined fluids. Of all models considered, the Carnahan/Star-
ling version of the Tarazona model predicts density profiles
for confined hard-sphere fluid in closest agreement with the
Monte Carlo results of Snook and Henderson,'* and density
profiles for confined Lennard-Jones fluid in good qualitative
agreement with the molecular dynamics results of Magda et
al.'®

The Carnahan/Starling version of the YBG model also
delivers a strong performance. For confined hard-sphere flu-
id, this model predicts normal pressure and average layer
spacing in closest agreement with the Monte Carlo results,
although it underpredicts the degree of molecular structur-
ing in the fluid. For confined Lennard-Jones fluid, the Car-
nahan/Starling version of the YBG model predicts density
profiles in closest agreement with the molecular dynamics
results and predicts the pressure almost as well as the Tara-
zona model.

The generalized hard-rod model and the YBG model
are based on intuitive extensions of the rigorous one-dimen-
sional hard-rod theory to three dimensions. While these
models fail to agree quantitatively with simulation results,
they capture the qualitative behavior of confined hard-
sphere and Lennard-Jones fluids. Both models retain much
of the mathematical and physical simplicity enjoyed by the
generalized van der Waals model, but do not fail at high
mean pore density. They might be especially useful for quali-
tative study of confined fluid mixtures for which the com-
plexity of the Tarazona approach becomes more formidable.
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