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A recently introduced model is used to study several flows in fluids with large density
variations over distances comparable to their molecular dimensions (strongly inhomogeneous
fluids). According to our model, the local average density model (LADM), local viscosity
coefficients can be assigned at each point in a strongly inhomogeneous fluid and the stress
tensor retains its Newtonian form provided that the properly defined local viscosities are used.
The model has been previously shown to agree with the results of molecular dynamics
simulations on diffusion and flow properties in plane Couette flow. Application of this model
requires determination of the molecular density profiles in the flow region. Using a successful
closure for the pair distribution function, we solve the Yvon-Born-Green (YBG) equation of
fluid structure in order to determine the density profiles of a fluid confined between planar
micropore walls only a few molecular diameters apart. The fluid confinement produces a
strongly inhomogeneous structure. Subsequently we apply LADM to set up the fluid
mechanical equations for Couette flow, Poiseuille flow, and squeezing flow between parallel
plates. With the use of the YBG theoretical density profiles we solve the flow equations and
predict velocity profiles, stress distributions, and effective viscosities. The dependence of these
quantities on the fluid inhomogeneity is described. The effective viscosity of strongly
inhomogeneous fluids is found to be quite sensitive to the nature of the flow. Our squeezing
flow analysis provides a first explanation of recent experimental findings on the effective
viscosity of simple fluids confined in very narrow spaces.

I. INTRODUCTION

In the interfacial zone between coexisting bulk fluid
phases, in fluid near a solid wall or in fluid within microscop-
ic pores, the fluid density is strongly inhomogeneous. The
strong density variation has been predicted from microscop-
ic models of fluid structure,’ has been observed in many mo-
lecular simulations,”* and has been deduced experimental-
ly.*

There has been considerable progress in our under-
standing of the equilibrium properties of interfacial fluids
during the last decade.’® Little has been done, however,
towards understanding the transport and flow behavior of
these systems. Contrary to bulk fluids, interfacial fluids ex-
hibit strong density variations on a microscopic, molecular
scale. This fact introduces serious conceptual and operation-
al difficulties in the description of their transport behavior.
In particular, the lack of uniformity on a molecular scale
makes the traditional microscopic identification of the mass
flux, stress tensor, and energy flux inappropriate® causing in
this way the failure of the usual microscopic definition of
local transport coefficients.

An alternative starting point is the generalization of
Enskog’s kinetic theory to fluids with strong density inho-
mogeneities over molecular distances. This approach has
been pursued recently by Davis and co-workers.!®"* The
constitutive equations resulting from such an approach are
different and more complicated than those of bulk fluids due
to the inherent anisotropy of the strongly inhomogeneous
medium. The corresponding hydrodynamic equations,
therefore, are much more complex than the usual Navier—
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Stokes equations, which makes their application tedious to
all but the simplest flows.

Recently, we completed a series of molecular dynamics
simulations that investigated the effect of strong density var-
iations over molecular distances on the flow behavior of sim-
ple fluids."* We simulated a fluid consisting of molecules
that interact via pairwise additive, spherically symmetric
forces of the Lennard-Jones type. The fluid molecules were
confined between planar micropore walls that exerted forces
on them. The pore width was 5.4 molecular diameters. By
employing a nonequilibrium molecular dynamics tech-
nique'® a constant shear rate was imposed upon the fluid
slab, thereby simulating plane Couette flow.

The effect of the density inhomogeneity on the flow be-
havior is demonstrated in Fig. 1 taken from Ref. 14. Instead
of the linear velocity profile that would be developed in a
homogeneous fluid, a clearly nonlinear velocity profile is ob-
served. Superimposed on the velocity profile is the density
profile. We see that the density profile is indeed strongly
inhomogeneous and exhibits substantial fluid layering.
Some kind of correlation between density and velocity is al-
ready apparent from Fig. 1. The regions of low slope of the
velocity profile next to the walls correspond to the two high
density regions, while the high slope in the center of the pore
corresponds to the much lower densities of this region. Fur-
thermore, these results show that the effective shear viscos-
ity and the pore average shear stress of the micropore fluid
are much lower than the corresponding homogeneous fluid
values (see Table I for the units of the various quantities and
Table II). These simulation results can be regarded as ‘‘ex-
perimental findings.” Our model fluid as shown by Bitsanis
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FIG. 1. Density and velocity profiles for the micropore fluid simulated by
Bitsanis ez al..(Ref. 16). The open squares are the theoretical velocities,
predicted by LADM.

et al."* accurately reproduces the flow behavior of a real
homogeneous fluid in the sense that if the pore walls (and
hence the density inhomogeneity) are removed and a con-
stant shear rate is imposed upon the homogeneous fluid a
perfectly linear velocity profile is developed and the simula-
tion values for the effective shear viscosity and the diffusivity
are identical with the experimental values for liquid argon
within the statistical uncertainty of the simulation results
(less than 4%).

The correlation between the density and the velocity
profiles in Fig. 1 suggests that the introduction of local vis-
cosities might be useful for the description of flow in strongly
inhomogeneous fluids, despite the conceptual difficulties as-
sociated with their definition. According to usual hydrodyn-
amics local transport coefficients can be assigned at each
point inside an inhomogeneous fluid. These are the same as
the transport coefficients of a homogeneous fluid at the local
density, i.e., they are point functions of the density. Usual
hydrodynamics are of course applicable only if the fluid den-
sity, despite its macroscopic variation, hardly changes over
molecular distances. Let us ignore these limitations, how-
ever, and for the sake of argument take the point function
definition of the local transport coefficients literally and ap-
ply it in order to predict the velocity profile and the effective
viscosity of the strongly inhomogeneous fluid with the den-
sity profile shown in Fig. 1. The results of such a calculation
are shown in Fig. 2 and Table II. The comparison between
these predictions and the simulation results is rather disap-
pointing. It appears that the effects of strong density inho-
mogeneities on the flow and transport behavior are much
weaker than what they would have been, had the local trans-
port coefficients been literally point functions of the density.

Based on these considerations, Bitsanis et al.'* present-
ed a model, the local average density model (LADM), that
leads to tractable equations for the prediction of the flow
behavior and the transport coefficients of strongly inhomo-
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FIG. 2. Comparison of the velocity profile predicted by usual hydrodyna-
mics (point function dependence of the local transport coefficients on the
density) with the simulation results (Ref. 14).

geneous fluids. The agreement between the LADM predic-
tions and the simulation results was found to be surprisingly
good'*!'* as it can be seen from Fig. 1 and Table II. Further-
more, LADM agreed well with more rigorous but more
complex kinetic theoretical results of Davis et al.'®"?

It seems, therefore, that LADM provides an adequate
description of transport and flow in strongly inhomogeneous
fluids, yet it retains most of the simplicity of usual hydrodyn-
amics. Of course, the application of LADM requires the
knowledge of the fluid density profiles. The important devel-
opments in the equilibrium theories of strongly inhomogen-
eous fluids>® allow an almost quantitative prediction of the
equilibrium density profiles.

The fluid density profile under flow can in principle be
different from the equilibrium one. The simulations of Bit-
sanis et al.,'* however, demonstrated that flow does not af-
fect sensibly the density profile even for shear rates orders of
magnitude higher than those encountered in usual flow si-
tuations. This is an important point, since it allows the de-
coupling of the problems of density profile determination
and flow description.

The simulation findings'# combined with the theoretical
advances™ 3 allow for the first time a theoretical prediction of
the flow behavior of strongly inhomogeneous fluids. The
means of doing fluid mechanics in strongly inhomogeneous
fluids are now available and the first objective of this article
is to demonstrate their use by actually solving typical flow
problems. The flows that will be studied (Couette flow, Poi-
seuille flow, and squeezing flow between parallel plates) are
of considerable importance because they occur in systems of
practical interest (pressure driven flow in micropore solids)
or they have been used in relevant experiments (squeezing
flow between the solid surfaces of the surface forces appara-
tus 16,17 ) R

The second objective is to provide information on the
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effects of strong density inhomogeneities in different flow
situations, to demonstrate that the failure of a continuum
description of the flow occurs at different points for different
flows, and to show that the effect of fluid structure on impor-
tant material properties, like the effective viscosity, depends
strongly on the type of flow.

Finally, our third objective is to provide a molecular
level rationalization of recent puzzling experimental mea-
surements of the effective viscosity of molecularly thin liquid
films.'5'7 Hopefully, this rationalization will allow the de-
sign of more revealing experiments on the flow and transport
behavior of strongly inhomogeneous fluids.

The rest of this paper has been organized as follows: In
Sec. II the LADM for strongly inhomogeneous fluids is pre-
sented. This model provides a constitutive equation which
along with the knowledge of the density profile, enables us to
set up the fluid mechanical equations. In this section we also
review the molecular theory that leads to the prediction of
the density profiles and which motivated the development of
LADM. In Sec. IIT we set up and solve the fluid mechanical
equations for plane Couette flow, Poiseuille flow, and
squeezing flow between parallel plates in strongly inhomo-
geneous fluids confined between planar micropore walls. In
Sec. IV the velocity profiles and the effective viscosities for
these flows are presented and their dependence on the fluid
structure is demonstrated and discussed. In the same section
we discuss the relevance of our squeezing flow calculations
with the experimental results of Chan and Horn'® providing
in this way a first molecular level rationalization of these
results and an explanation for their apparent discrepancy
with the results of Israelachvili."”

Il. THEORY

According to the LADM" the local value of the trans-
port coefficient at the position r inside a strongly inhomo-
geneous fluid is approximated by

Ar) =A°[A(r)] . (2.1)

A°[7(r)] is the transport coefficient of a homogeneous fluid
at the local average density at the point r. The local average
density at r is defined as the average density inside a sphere
with its center at r and with diameter equal to the diameter of
the fluid molecules .

1
o 3/ 6 R<o/2
n(r) is the actual fluid density at the position r.

The constitutive relation according to the LADM re-
tains its Newtonian form:

7(r) = §°[A(x) ] [V¥ + V¥"]

+ {7 [A()] — °[A() 1}V, (2.3)
where ¥ is the flow velocity, V¥7 is the transpose of V¥, 7°(R)
and 7 () are the shear and bulk viscosity coefficients of the
homogeneous fluid at the local average density 7, and 1 is the
unit second rank tensor.

The LADM, therefore, accounts for the strong density
inhomogeneities by the use of transport coefficients that cor-
respond to the coarse grained local average density instead of

A(r) = n(r+ R)d3R.

(2.2)
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the actual local density. In the limit of a homogeneous (or
weakly inhomogeneous) fluid #(r) = n(r) and one recovers
the local equilibrium approximation of usual fluid mechan-
ics.

Despite its ad hoc introduction, the use of the local aver-
age density is intuitively satisfactory. Heuristically one ar-
gues that the transport coefficients in dense fluids are pri-
marily determined by potential interactions between a
reference molecule at r and its nearest neighbors. Some type
of averaging is inherent in the very concept of the transport
coefficient.® The volume over which this averaging is to be
performed must be a microscopic volume of molecular di-
mensions but it is otherwise arbitrary. However, there are
several arguments in favor of our specific choice (i.e., a
sphere of molecular diameter). The same coarse graining
has been used with great success for the pair distribution
function of inhomogeneous fluids in equilibrium theories of
fluid structure.® It has also been shown to give the exact pair
correlation function for a system of one-dimensional hard
rods.'® Another reasonable choice for the averaging volume
is a sphere with radius equal to the molecular diameter. Asa
matter of fact, this was the first choice used in free energy
density functional theories of equilibrium fluid structure.°
Although it might be argued that the employment of such an
averaging volume would be closer to the spirit of Fischer and
Methfessel’s approximation,® this larger averaging volume
furnished poor predictions for the effective viscosity of the
micropore fluid (Table IT) without improving the predicted
velocity profile over that obtained by the use of the original
averaging volume (a sphere with diameter equal to the mo-
lecular diameter). In Ref. 14 another type of strongly inho-
mogeneous fluid was studied, namely a fluid confined
between two purely repulsive planar walls, which lead to the
development of the major density peak at the center of the
fluid slab.'* For this system too, LADM reproduced quanti-
tatively the velocity profile, shear stress, effective viscosity,
and average diffusivity. The use of the larger averaging vol-
ume (a sphere with radius equal to the molecular diameter)
overestimated the effective viscosity by more than 50% and
failed to reproduce even qualitatively the simulation velocity
profiles.

Perhaps the strongest argument in favor of the LADM
is its success in application to plane Couette flow. As it can
be seen from Fig. 1 the LADM prediction for the velocity
profile agrees almost within the limits of statistical uncer-
tainty with the simulation profile. Bitsanis et al.!* showed
that LADM reproduces almost quantitatively the simula-
tion results both for the effective shear viscosity and the pore
average diffusivity. A more detailed comparison with exten-
sive diffusivity simulations in micropores of various sizes is
also quite satisfactory.>!

To complete the picture one needs a model for the vis-
cosity of homogeneous fluids [see Eq. (2.3)]. The simple,
yet fairly successful Enskog model for hard sphere fluids will
be used.’® According to the Enskog theory

n(n) = 7°bn(Y ~' 4+ 0.800 4 0.761Y ),
where

(24)
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7° = (57mky T )'/%/16mo ? is the hard sphere dilute
gas viscosity,

n is the fluid density,

kg is Boltzmann’s constant,

m is the mass of the molecule,

T is the temperature,

o is the molecular diameter,

b = 270 */3 is the hard sphere second virial coefficient,

Y =nbg’(oyn) = pus/nksT— 1,

g°(o;n) is the contact value of the pair correlation
function of the hard sphere fluid,

Pus 1s the pressure of the hard sphere fluid.

One needs an equation of state in order to calculate Y. A
reasonably accurate choice for hard sphere fluids is the Car-
nahan-Starling formula?!

Pus _ l4y+y
nky,T  (1—yp)*"’

~where y = 7mno /6.

When the density profiles are available one can set up
the fluid mechanical equation of motion. This equation is
similar in form to the Navier-Stokes equation except that
the viscosities are functionals, not point functions, of the
density profile. There are several theories of fluid structure
that lead to tractable equations for the density profiles ar
equilibrium. The flow can in principle affect the density pro-
file. Currently there is no theory that assesses the importance
of this effect. The molecular dynamics simulations of Bit-
sanis et al.,'* however, show that the flow has no detectable
effect on the density profile at least up to shear rates orders of
magnitude larger than the ones encountered in realistic flow
situations (10'°-10"' s~ ). From this it follows that for usual
flow situations the density profile is identical with the equi-
librium density profile.

The equilibrium density profiles used as inputs to the

“analysis that follows were obtained from the Yvon—Born-
Green (YBG) theory of inhomogeneous fluids*® with the
Fischer—Methfessel approximation for the pair correlation
function.® We assume that the particles interact with pair-
wise additive, spherically symmetric forces whose pair po-
tentials can be approximated by

(2.5)

u(s) =ug(s) +u,(s), (2.6)
where the repulsive part of the potential is
Ur(s) = w0, s<o,
=0, s>o0, 2.7)

and u, (s) is the continuous, attractive part of the pair po-
tential. The pore walls confining the fluid will be represented
by the conservative potential #¢ (r). At equilibrium, the den-
sity n(r) of the fluid obeys the YBG equation, which is a
microscopic force balance,

kgTVn+nVu®—n fn(r +8)g(r,r + s)iug (s)d3s
s

+ nkBTfn(r +ok)grr+o0k)o’kd?* =0,
(2.8)
where g(r,r’) is the inhomogeneous fluid pair correlation

function, k is a unit vector lying along the line of centers of a
pair of molecules in contact, d %k denotes an element of solid
angle associated with k. The physical meaning of the various
terms in the YBG equation is the following: The first term is
an entropic force which arises from the density gradients, the
second term is an external force (which in our case arises
from the wall potential), and the third and the fourth terms
are the attractive and repulsive forces, respectively, exerted
on molecules at r from all the other molecules.

Equation (2.8) is exact for fluids whose intermolecular
potential is described by Egs. (2.6) and (2.7). However, in
order to compute the density n(r) one must know the rela-
tionship between the density distribution and the pair corre-
lation function of inhomogeneous fluids. Such a relationship
is not available in general. However, the approximation in-
troduced by Fischer and Methfessel,® which in fact inspired
our introduction of LADM for describing flow and diffu-
sion, has been shown to give fairly accurate predictions of
the density profiles in liquid—vapor and liquid-solid inter-
faces. It has also been shown that their approximation gives
the exact density distribution for one-dimensional hard rods
in an external field.'®

The main assumption of Fischer and Methfessel is that
the pair correlation function can be approximated as

glr,r+s) =g°[s;r't(r+%s)] , 2.9)
where g° is the correlation function of homogeneous fluid
and 7 is the local average density defined by Eq. (2.2).

This approximation for the pair correlation function
renders the YBG equation solvable. However, we shall
further simplify the theory by making the van der Waals’
structureless fluid approximation (g =0,s<0;8=1,5>0)
in the integral involving the long-ranged force u/.® The
YBG equation thus becomes

V[k,,Tln n+u+ fn(r +8)u, (s)d3s] + kT

X Jn(r + o k)g{o;Alr + (6/2)k]}o’kd’k =0.
(2.10)

Finally, to complete the model, a formula for the con-
tact value of the homogeneous fluid pair correlation function
g° must be given. We choose the Carnahan—Starling formula

1— (7/12)0°n

glo) = [1— (7/6)0 ]

(2.11)

known to be quite accurate in hard sphere fluids.?'

In the calculations to be reported in what follows we
shall consider planar systems, i.e., flat pore walis so that
u® = u°(z) and n = n(z), where z is the distance from a pore
wall. In this case Eq. (2.10) can be integrated to give

p*=u(z) + kyTlnn(z) + f n(z')ia,(z—z')dz

Z +1
+ 270 ZkBTf dz’f dé En(Z + ob)g
0 —1
X[A(Z +406) ], 2.12)
where
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a/2

fi(z) = i:' [0.2502 ~ (z — 2')*]n(2)dZ .

g —0/2

(2.13)

The parameter u* is the constant of integration. It plays a
role similar to the chemical potential.

The external potent1a1 u° (2) arises from the solid walls
atz=0andz=D.

u'(z) = ¢,(2) +¢,(D—2),
where each wall exerts a 10-4-3 Lennard-Jones potential®':

el (2
V2o,

3[z+ (0.610,/42)]?
The fluid-fluid intermolecular potential

] , 2>0. (2.14)

+ o
U,2) = Jf wi(s)dy dx

(2.15)
is taken to be
,(z) = —2mec?, |z| <o,
6
= — 277-640 y zl>o. (2.16)
z

This corresponds to the attractive part of a *“6- "’ Lennard-
Jones potential, namely,

6
ut(s) = —46(1) , §>0,
s

=0, s<o.

We have chosen the following parameters for our sys-
tem: o, =0,€6, =€=0.82645k,T.

The equilibrium density profiles were obtained by solv-
ing Eq. (2.12), using Egs. (2.11) and (2.13) for the pair
correlation function. The domain of interest, 0 <z < D, was
discretized uniformly and trapezoidal rule was used to
evaluate the integrals. The result is a system of nonlinear,
coupled, algebraic equations. Newton’s method was used to
solve for the nodal values of the density. The domain was
discretized finely enough so that the solution changed negli-
gibly with further refinement. A mesh size of 0.050 was
adopted in our calculations.

lil. THE FLUID MECHANICAL ANALYSIS

Before setting up and solving the fluid mechanical equa-
tions for the three model flows, plane Couette flow, Poi-
seuille flow, and squeezing flow between parallel circular
plates we want to make some comments about the physical
realism of the boundary conditions we shall use for the solu-
tion of these equations. The planar pore walls we employ are
model walls. Apart from the approximate nature of the wall
potential, these walls, contrary to most real walls, are per-
fectly smooth; they lack the roughness of real walls, which in
most instances facilitates the sticking of the fluid particles on
them and the physical realization of the no-slip boundary
condition. The wall potential we employ is the 10-4-3 Len-
nard-Jones potential {see Eq. (2.14)]. The choice of the

proper boundary conditions for flow in strongly inhomogen-
eous fluids is an important unsolved problem. We do not
claim to have solved this problem here. Our choice of bound-
ary conditions (nature of the boundary conditions and posi-
tion of the no-slip plane) is based on physical intuition and
on indirect simulation results which indicate that a no-slip
condition is appropriate when a high density layer is located
right next to the solid walls.'* We should note, however, that
no hydrodynamic theory is supposed to provide its boundary
conditions. In that sense, LADM is equally applicable, no
matter what the boundary conditions are, provided that so-
mehow they have been supplied independently.

The density profiles of a Lennard-Jones fluid confined
between two 10-4-3 Lennard-Jones pore walls show that up
to a distance 0.75-0.80 the fluid density is practically zero
for any wall-wall separation.® Furthermore, the simulations
of Bitsanis et al.'* indicated that slip is observed next to such
walls unless the fluid density is high in the vicinity of the
wall. In other words, the answer to the slip-no-slip question
for a 10-4-3 Lennard-Jones wall depends on the specific
choices of the parameters of the wall potential. Since no fluid
exists up to 0.75¢0 from the wall an analysis of the flow in
there is rather meaningless. We decided, therefore, to apply
the no-slip boundary conditions at a distance 0.75¢ from the
walls. One may wish to imagine that in this way we account
for slight imperfections of the wall surface that would assure
no slip.

For a fluid confined between planar micropore walls,
the density varies only in the direction normal to the walls,
the z direction. Hence, the local average density and the local
viscosity coefficients depend on z only [see Eqs. (2.1) and
2.2)].

A. Plane Couette flow

The flow is in the x dirqction. Therefore, the macrosco-
pically imposed shear rate ¥ is

v=[v.(D/2) —v,(—~D/2)}/D. (3.1)

The momentum conservation in the z direction simply yields
3.2)

where 7,, denotes the pore average shear stress. According
to the LADM r,, = —5(2)(dv,/dz), where 7(z)
= 7°[#(z) ]. Thus the flow velocity is

S5 ldE /m(8)]

T, (2) =const. =7, ,

v, (2) =1 (3.3)
(1/D)f”/§>/z [dé /m(&)]
and the shear stress
- ¥
Tx (z) = Tzx = . (34)
(I/D)fb D2 [d§/ﬂ(§)]

One can identify an effective viscosity by rewriting Eq. (3.4)
in a form apparently identical with the homogeneous fluid
result:

Tox = Nea¥ - (3.5)
Therefore,
D /2
e = (3‘6)
Ter J D2 1](5)
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Obviously 7.4 is not a fluid property but depends on the flow
as well. It might even depend on the macroscopic observable
with which we want to establish the macroscopic connec-
tion. These points will be clarified further from the analysis
of the remaining two flows.

B. Poiseuilie flow

The flow is again in the x direction. The macroscopical-
ly imposed pressure gradient is denoted by

dp
= — 3.7
P dx
The momentum conservation in the z direction yields
dr,,
—= +p,=0. (3.8)
dx
According to LADM, r,,= —9(z)dv,/dx, n(z)

= 7°[7(2)]. Integrating and applying the no-slip boundary
conditions on both walls we get for the velocity profile

“ £
= dE—>— .
v (2) =p, f_ on 2 7(5)

Note that according to Eq. (3.9) a symmetric density profile
leads to a symmetric velocity profile.
The volumetric flow rate is

D/2 z £
= d dé——.
2=> J—D/2 ZJ—D/z 577(5)

By rewriting Eq. (3.10) in the form it would have for a
homogeneous fluid,

p.D’
lzneﬂ‘ .

We can identify an effective shear viscosity for Poiseuille
flow

D3[JD/2 J~Z é_ —1
o = — —— d. dé—— ;
K 12LJ-pn z .y §77(§)

Note that this is a quite different quantity from the effective
viscosity for Couette flow [i.e., Eq. (3.6) 1.

(3.9)

(3.10)

(3.11)

(3.12)

C. Squeezing flow between paraliel circular plates

The hydrodynamic analysis for squeezing flow is con-
siderably more complicated and delicate. A “quasi-steady-
state” solution will be used; that is at any time ¢ the radial
flow will be treated as a steady-state hydrodynamic problem,
but the time rate of change of mass between the two disks
will be accounted for properly.?! For homogeneous fluids
this assumption leads to the use of a steady-state equation of
continuity. For an inhomogeneous fluid the density at a
fixed position in space is a function of the time dependent
disk separation as well, i.e.,

n=nlz,t,D(t)] . (3.13)

If we use the symbol d /dt to denote the time derivative at a
fixed position in space the equation of continuity reads
dn _on  dD dn a

1 2
- at @ HmM T e
(3.14)

where D is the distance between the plates. The quasi-steady-

state approximation amounts to neglecting the term dn/dt.
Using also the fact that » is not a function of r we get

dD dn d 14

v,) —n——(r,).
dz r ar
From Eq. (3.15) and the quasi-steady-state approximation

follows that

(3.15)

14
——(m,) =f(2). (3.16)
r or
In an inhomogeneous fluid the pressure tensor at equilibri-
um is not isotropic. Under flow we can always write

p=p°+p’, (3.17)
where the superscripts eand f denote the equilibrium and the
flow part of the pressure tensor, respectively. For an inho-
mogeneous fluid confined between planar micropore walls
the condition of hydrostatic equilibrium yields

ap;,

or
Using Egs. (3.17) and (3.18) and neglecting the inertial
terms because they are small for squeezing flow>* if the
plates separation is much smaller that the disk radius (a

condition that is overwhelmingly satisfied in our case) the
momentum balance in the radial direction takes the form

=0. (3.18)

L 14 1 dr Teg = OT,
- ——=—(rr,) +— - — .
ar r or r a6 r dz
(3.19)

According to LADM the stress tensor retains its Newtonian
form [Eq. (2.3)]. Using the cylindrical symmetry, neglect-
ing the terms that contain V-v since they are small for lubri-
cation flows®* and using Eq. (3.16) the momentum balance
reduces to

apl, a( (z)av,)
or —c')z” az/)’

(3.20)

For homogeneous fluids dp/,/dr=dp%/dz and
dp1,/3z = 0if we neglect terms of order D /R and D*/R *in
the z equation of motion.?* In strongly inhomogeneous fluids
we know that the equilibrium part of the pressure tensor p* is
not isotropic and we know nothing about the symmetry
properties of the flow part p/. We cannot, therefore, con-
clude that p7, is z independent from the z independence of
PL,. We may use, however, a different type of argument.
From the equation of continuity (3.15) it follows that
v, = rg(z). Using this fact in the momentum balance equa-
tion (3.20) one concludes that p/, = rw(z) + v(z). If we
require a bulk fluid behavior at the edges of the disks (i.e.,
p*. and dp7,/9r independent of z) we see that p/, must be
independent of z everywhere. Such an approach cannot obvi-
ously account for the complicated edge effects. For disks
with radius much larger than the distance between them we
expect these effects not to be important, however. Taking
advantage of the z independence of p/, we can integrate Eq.
(3.20) with noslipboundary conditionsatz = 4 D /2toget

dp’, f cde

v,(rz) = — 7 iy .

3.21)
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Substituting Eq. (3.21) in the equation of continuity (3.15)
integrating and using the impenetrability boundary condi-
tion at the lower plate we get

1 |{dD f § on(&;D)
= — o~ delris2)
v (2) n(z) [ LY ¢ aD
14 (rdp ) J‘
d
t r dr\ dr D2 En()
Jg dé 5 ] (3.22)
X —=t. .
—pr2 &)
The impenetrability condition at the upper plate yields
0,(D/2) =42 (3.23)
dr’

Applying Eq. (3.22) at z= D /2 and using Eq. (3.23)
one gets an equation for the pressure p/, = p/, (7). Integrat-
ing, using the boundary condition p/,(R) = p,, where R is
the radius of the disks, and the requirement that pZ, (0) be
finite, one arrives at the result

R?dD
_ L 3.24
ph= Po+[ ( ) 44 dr’ o
A= 5258 n(0) 55 ppds [§/1(5)] , (3.25)

R + D(3n,,,/3D)

where 7,,, is the average density of the whole fluid slab
between the plates. This average density #,,, depends on the
plate separation since the squeezing is supposed to take place
under constant chemical potential.>!! The disks and the flu-
id are immersed in a bath containing bulk fluid at constant
chemical potential and temperature. To derive Eq. (3.25)
we also used the fact that the fiuid density exactly on the
walls is zero.

By restating Eq. (3.24) in the form it would have for a
homogeneous fluid

R’y dD
L =p —31—( )] R, 3.26
P [ D® adt (3.20)
we can identify an effective viscosity for squeezing flow:
D 3
Tt = T Toa
_ D3 Moy + D(On,,, /3D)
2 $2% dz n(2) 5% b, dE1E /()]
3.27)

Substituting Eq. (3.24) in Eq. (3.21) we get for the radial
velocity

dDrzdg'

_ao r _5 (3.28)
7($)

b, (rz) dt 24 J_pn

At the cost of an additional assumption, ie that the
flow part of the pressure tensor is isotropic (p/, =pZ.) we
can connect the effective viscosity to a more easily measura-
ble experimental observable, namely the hydrodynamic
force exerted on each of the squeezing plates. From Eq.
(3.22) and the LADM constitutive equation (2.3) it fol-
lows:

= — === d.
29(z )dt [dz n(z))[an D/Zn(Z) ?

1
_1 d J
_bn 24 D2 17(§)
1 [ _én@ 1 J' gdé ]
n(z)[ aD + An(Z) —ps2 n(§) .

(3.29)

The limiting behavior of the expressions for v, and 7, close
to the walls needs a careful examination. On a first sight the
limits of v, (z) and 7, (z) asz— + D /2 (i.e., n—0) are un-
determined quantities. The indeterminacy can be resolved if
we apply L’Hopital’s rule and make use of the following
conditions:

(1) sufficiently close to the walls the density is very low
and thus is proportional to the Boltzmann factor™
noexp{ — [u°(z) —pl/kT};

(2) the density profile close to the walls changes only
slightly with wall separation®'3,

(3) thelocal viscosity close to the walls changes slowly
with z since 7i(z) varies slowly there.

Using all the above we arrive at the results

hm v,(z) =0, lim v,(2) —d—D,
z— —D z—-D/2 dt

lim 7,=0. (3.30)

z— —D/2
The hydrodynamic force exerted on the lower wall is

R
FH= f J‘ (p{z _PO+Tzz)z=—D/2rdrd0'(3'3l)
0 0

Using Egs. (3.30), the assumptionp £, = p7, and Eq. (3.24)
we get

4
_TR7dD (3.32)
84 dt
By rewriting Eq. (3.32) in the homogeneous fluid form,
31T7Ieﬂ'R 4 dD
Fp=— ———— 3.33
" 2D3  dt (333

we identify the effective viscosity for squeezing flow with Eq.
(3.27) once again. We emphasize, however, that the identifi-
cation of the effective viscosity with the expression in Eq.
(3.27) does not rely on the assumption p/, = p £, and can be
established at an earlier stage.

IV. RESULTS

The units of the various quantities plotted in the follow-
ing figures are shown in Table I. One of the many density
profiles that were determined from the solution of the YBG
equation (see Sec. II) is plotted in Fig. 3. Superimposed is
the corresponding local average density profile which is re-
lated to the actual density profile through Eq. (2.2). The
local average density profile also exhibits an oscillatory be-
havior. Its variation however, is much smoother and its
peaks are everywhere lower than 1.00 3 a perfectly accepta-
ble homogeneous fluid density since it is everywhere lower
than the closest-packing density for a hard sphere fluid
1410732

Three velocity profiles for Couette flow and three for
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TABLE L. Units of the various quantities.

Length: o(molecular diameter)
Mass: m(molecular mass)
Energy: kg T
Number density: o>
Velocity: (kyT/m)'?
Viscosity: o~ 2(mkT)'"?
Pressure and shear stress: k,T/0*

Poiseuille flow are shown in Figs. 4(a), 4(b), and 4(c) and
5(a), 5(b), and 5(c), respectively. Superimposed are the
corresponding density profiles. For the largest wall separa-
tion (400) the fluid is homogeneous over the middle three
quarters of the liquid slab. The velocity profiles in Figs. 4(a)
and 5(a) are essentially identical with the ones of a homo-
geneous fluid. The deviation is much less than that anticipat-
ed from the density profile because the local average density,
rather than the actual density, is directly related to them.
For the other two separations (8¢ and 40) the density in-
homogeneity is very strong and inevitably shows up in the
velocity profiles. Nevertheless, the effect of the local density
averaging is still apparent. A careful inspection of Figs. 4(b)
and 4(c) and 5(b) and 5(c) and a comparison with the
homogeneous velocity profiles shows that the shear rate is
locally higher than the shear rate occurring in a homogen-
eous fluid at the same position if the local average density is
lower than the pore average density and vice versa. The z
dependence of the radial component of the velocity in
squeezing flow at a certain radial distance is identical with
the Poiseuille flow velocity [see Egs. (3.9) and (3.28)].

In Fig. 6 the effective viscosities for all three flows are
plotted as a function of wall separation. It follows from the
whole analysis of flow in strongly inhomogeneous fluids that
the effective viscosity is a flow dependent quantity. This is
demonstrated by Egs. (3.6), (3.12), and (3.27), the three
definitions of the effective viscosities for the three different
flows examined.

pore width 8¢
30

20 -

L5 - e—density profile

density

local average

Lo density profile

00 1.0 20 30 40 50 60 7.0 80
position

FIG. 3. Density and local average density profiles.

An obvious reason for the effective viscosity variation is
the variation of the pore average density with the pore width.
The viscosity of a homogeneous fluid with density equal to
the pore average density is also shown in Fig. 6. This quanti-
ty follows the oscillations of the pore average density.? In the
limit of large separations the effective viscosities must tend
to the homogeneous fluid viscosity, a physical requirement
that is obviously satisfied by all three defining equations for
the effective viscosities. For smaller separations, however,
the behavior of the effective viscosities is characteristic of the
flow. The effective viscosity for Poiseuille flow seems to be
the most insensitive on the density inhomogeneities. It is
indistinguishable from the homogeneous fluid viscosity up
to very small separations (6-7¢). The effective viscosity for
Couette flow is systematically smaller than the homogen-
eous fluid viscosity for separations smaller than 20-25¢0. At
very small separations (less than 40) they both become os-
cillatory functions of the wall separation with period equal
to the molecular diameter o.

The effective viscosity for squeezing flow exhibits a
much stranger behavior. Its dependence on the density in-
homogeneity is much stronger. Even at separations as large
as ~40o it is still 10% higher than the homogeneous fluid
viscosity. Up to separations 6-7¢ it is systematically higher
than the homogeneous fluid viscosity. At separations lower
than 8¢ the effective viscosity for squeezing flow becomes an
oscillatory function of the disk separation. The oscillations
of this quantity, however, are much stronger and grow much
faster as the disks get closer than the ones observed for the
effective viscosities for Couette and Poiseuille flow.

Our analysis of flow in strongly inhomogeneous fluids
provides for the first time a physical explanation of recent
experimental measurements of the effective viscosity of sim-
ple nonpolar liquids confined in very narrow spaces.'s"’
These measurements were performed using the surface
forces apparatus, an apparatus capable of measuring forces
between surfaces separated by very small distances (up to a
few A). In the experiments of Chan and Horn'® the confined
fluid was squeezed between two crossed cylindrical surfaces,
whose radii of curvature were much larger than their dis-
tance of closest approach. The effective viscosity was found
to be systematically higher than the bulk fluid effective vis-

TABLE II. Comparison between LADM predictions and simulation re-
sults.

Effective Shear
viscosity stress
Homogeneous
fluid 1.21 + 0.04 0.181 4 0.004
Micropore
fluid simulation® 0.65 4+ 0.02 0.121 4 0.003
LADM 0.70 0.130
usual fluid
mechanics 0.38 0.071
LADM 0.77 0.143
(with local density

averaged over 20)

*Reference 14.
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FIG. 4. Velocity profiles for Couette flow: (a) pore width 400 ; (b) pore
width 8¢ ; (c) pore width 4¢.

cosity for separations between 10 and 50 fluid molecular di-
ameters. At smaller separations the cylinder separation was
changing in a stepwise manner. In the experiments of Israe-
lachvili a different flow situation was employed, namely the
upper cylinder was undergoing forced oscillations along the

Bitsanis et al.: A molecular theory of flow
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FIG. 5. Velocity profiles for Poiseuille flow: (a) pore width 40c ; (b) pore
width 8¢ ; (¢) pore width 40.

common normal of the two cylinders. The effective viscosity
was found to retain its bulk fluid value up to separations of
ten fluid molecular diameters.
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FIG. 6. Effective viscosities for Couette, Poiseuille, and squeezing flows as a function of pore width: (a) range of pore widths 0400 ; (b) range of pore widths
0-90 (note that the viscosities are measured in the units of Table I, therefore the bulk fiuid viscosity is not 1).

According to our analysis the effective viscosity is a
flow-dependent quantity. For this reason it is no surprise that
two experiments with two different types of flow yielded two
different results about the effective viscosity of strongly in-
homogeneous fluids. Furthermore, it is not at all clear that
the effects of strong density inhomogeneities will already be
measurable at ten molecular diameters. This is due to the
coarse graining involved in the definition of the local trans-
port coefficients that weakens substantially the spatial varia-
tions of the relevant local average density profile.

The squeezing flow between crossed cylinders, exam-
ined by Chan and Horn,'® is similar, although not identical,
with the squeezing flow between parallel plates because the
radii of curvature of the cylinders were much larger than the
distance between them. Our predictions for the effective vis-
cosity in squeezing flow between parallel plates are clearly in
qualitative agreement with these experimental findings (see
Fig. 6). At separations between 10400 our model predicts
an effective viscosity higher than the homogeneous fluid vis-
cosity. In Ref. 16 the fluid was found to drain slower than a
homogeneous fluid for separations between 10-50 molecular
diameters, a fact which implies the existence of an effective
viscosity higher than that of the bulk fluid in qualitative
agreement with our predictions.

At smaller separations the stepwise change of the sepa-
ration was entirely attributed to the solvation force between
the two cylinders,* which is an oscillatory function of separa-
tion. Such an approach could not fully explain the experi-
mental findings. The inclusion of the solvation force would
produce a stepwise draining but the separations at which the
steps were predicted to take place by such an approach did
not match those observed experimentally. Our analysis,
which leads to an oscillatory effective viscosity and, there-

fore, an oscillatory hydrodynamic force, suggests that the
net force between the cylinders would result from the inter-
JSerence between two oscillatory terms, namely the solvation
Jorce and the hydrodynamic force. A full comparison, how-
ever, with the experimental results, which requires the anal-
ysis of the crossed cylinder flow situation employed experi-
mentally, will be the topic of another paper, currently in
preparation.
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