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An overview is glven of recent progress made In our labo-
ratory on thls tople. The density profiles of fluid In micro-
pores are found by solving numerlcally an approximate
Yvon-Born-Green equation. A related local average density
model (LADM) allows predictlon of transport and flow In
Inhomogeneous flulds from density proflles. A rlgorous
extension of the Enskog theory of transport is also outlined.
Simple results of thils general approach for the tracer
diffusion and Couette flow between planar mlcropore walls
are presented. Equlllbrium and flow (molecular dynamles)
simulatlons are compared with the theoretlcal predictions.
Simulated denslity proflles of the micropore fluld exhlblt sub-
stantlal fluld layering. The number and sharpness of fluld
layers depend sensitively on the pore width. The solvation
force and the pore average density and diffusivity are oscll-
lating functlons of the pore width. The theoretlcal predic-
tlons for these quantitles agree qualltatively with the slmula-
tlon results. The flow slmulations Indicate that the flow does
not affect the fluld structure and diffusivity even at
extremely high shear rates (10'%™!). The fluld structure
induces large devlations of the shear stress and the effectlve
viscosity from the bulk fluld values. The flow veloclty
proflles are correlated with the denslty profiles and differ
from those of a bulk fluld. The LADM and extended
Enskog theory predlctions for the veloclty proflles and the
pore average diffusivity agree very well with each other and
with the simulation results. The LADM predictlons for the
shear stress and the effectlve viscoslty agrees falrly well with
the shmulatlon results.

Examples of flulds confined in pores and spaces of molecular or nanome-
ter dimensions abound in technological and natural products and
processes. These Include wetting and lubricatlon, zeolite supported
catalysls, sllica gel based chromatrographic separations, drylng of paper
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products and clay dlsperslons, aggregation of collolds, permeatlon of Vicor
and other sintered glasses, the formation of soap films, foams and emul-
stons, and water or oll rich zones In lyotropic llquld crystals and veslcular
bilayer structures. In such conflnement the flulds can be strongly
inhomogeneous and so the usual theories of fluld structure and dynamlcs
may not be applicable. Owlng to the molecular dimensions Involved,
experlmental characterization of fluld Iln micropores Is also difficult. Thus,
computer simulation on model systems becomes an Important tool to test
1deas and supplement experiments on real systems In trylng to understand
the behavior of flulds confined on the nanometer scale.

In thls paper, we report recent progress made In our laboratory In
using molecular theory and computer simulatlon to understand the struc-
ture, flow and transport of flulds confilned by planar solld walls separated
by a few molecular dlameters.

Molecular Theory of Structure and Transport

Equlllbriym Theory of Fluld Structure. In all the theoretical work
reported herein, we assume that the particles Interact with palr additive
forces whose palr potentlals can be approximated by

u(s) =ug(s) + uu(s) (1)

where

ug(x) =00, s <o

=0, s>0 (2)

and u,(s) Is the continuous, attractlve part of the palr potentlal. The pore
walls confining the fluld will be represented by the conservative potential

u®(r). At equillbrlum the density n(r) of the fluld obeys the Yvon-Born-
Green (YBG) equation

kpTvn + nyu® - nf n(r+s)g(r, r + 8) %uA’(s)dss

+ nkgT[ n(r + o k)g(r,r + o k)o *kd’k =0 (3)

where g (r,r) Is the palr correlation function, ky Is Boltzmann's constant
and T Is the absolute temperature. k I1s a unlt vector lylng along the line
of centers of a palr of molecules In contact. d?k denotes an element of
solid angle assoclated with k.

Equation 3 1s exact for flulds obeylng Equations 1 and 2. However, In
order to compute the denslty n(r) from the YBG equatlon one must know
the relatlonship between density distribution and the pair correlation func-
tlon of Inhomogeneous fluld. Such a relationship Is not avallable In gen-
eral. However, an approxlmation Introduced by Flscher and Methfessel
(1) has been shown to glve falrly accurate predictions of the density
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profiles in llquid-vapor and liquid-solld interfaces. It has also been shown
that thelr approximation glves the exact density distributlon for omne-
dimensional hard rods In an external potential u®. The maln assumptlion
of Fischer and Methfessel 1s that the palr correlation function can be
approximated as

gum+s>=%%aar+§a» (4)

where g° 1s the correlatlon function of homogeneous fiuld and n 1s a local
average density defined by

— 1
n(r) = ——— n(r + R)d°R
T ST )

Equation 4 renders the YBG equation solvable. However, as did Fischer
and Methfessel we shall further simplify the theory by making the van der
Waals’ structureless fluld approximation (g =0,s < o0 ,g=1,8 >0
) In the Integral Involving the long-ranged continuous force uA’. The
YBG equation thus becomes

¥ [kgThn + u® + [ n(r+s)u,(s)d’s]

+ kgT[ g°(a;ﬁ(r+%k)a2kd2k =0 (8)

To finally complete the model a formula for the contact value of the palr
correlatlon functlon g° must be glven. We choose the Carnahan formula

T 3=
1- .IE—U n
g°(osn) =———— (7

T —
(1- ?o3n)3

shown by Carnahan and Starling (2) to be accurate in hard sphere fiulds.

In the calculations to be reported In what follows we shall consider
planar systems, l.e., flat pore walls so that u® =u®(x) and n = n(x),
where x s the distance from a pore wall. In thls case Equation 6 can be
Integrated to glive

+oo
p'=Inn(x) + [ n(xNup(x - x)dx!
kBT—O()
X 1 1 e(
+ 27r<72f dx’f deen(x! + o¢)e(n(x! + —0¢)) - u—x-)— (8)
0 e 2 kgT

where
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+0 /2
n(x) =(6/0% [ (.250%- (x - x)¥)n(x")dx’ (9)

-0 /2

The constant of Integratlon u” Is a fleld varlable simllar to the chemlcal
potential (u* == -3.6227 in our calculatlons).

The external potential, u®(x), arises from the solld walls at x = 0 and
X = h.

u®(x) =¢4(x) + ¢y(h - x) (10)

where each wall exerts a 10-4-3 potential (3):

_ 2 Ow 0 O w ) \/E_O\%
=l <) =) 0.610‘,,)3 X Z0

3(x + 7

egand o, are characterlstic wall-fluld particle energy and separation dis-
tance parameters,
The fluld-fluld Intermolecular potentlal,

Ta(x) =f_:°f wA(s)dydz (12)
Is taken to be
Uy(x) =- 2me0?, kl<o
— 2 s, (13)
x‘l

This corresponds to the attractive part of a "6 - oo” Lennard-Jones poten-
tlal; namely,

6
ut(s) =- 46[9—] , $>0
s
= 0 , s<o (14)

The normal pressure Py 1n the fluld confilned between the walls varles
with wall separation and Is not, In general, equal to the bulk pressure Pg
of fluld at the same chemlcal potentlal. The difference Py ~ Pg Is the sol-
vatlon force per unlt area, (4) f,, and can be calculated from the equlll-
brlum density proflles by
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¢w( ) ® de(x)
—_— fn( ) dx + fn(X)de

]

(15)

The equlllbrium denslty profiles are obtalned by solving Equatlons 8
and 9 for a modifled density n*(x), where

n*(x) =n(x)e" X)/AT (18)

Thls modifled density 1s a more slowly varying function of x than the den-
sity. The domaln of Interest, 0 << X < h, Is discretized uniformly and the
trapezoldal rule is used to evaluate the Integrals In Equations 8 and 9.
This results in a system of nonllnear, coupled, algebraic equations for the
nodal values of n* and n. Newton's method Is used to solve for n* and n
simultaneously. The domaln Is discretized filnely enough so that the solu-
tlon changes negliglbly with further refinement. A mesh size of 0.050
was adopted In our calculatlons.

Solutions were obtalned Inltlally for a wall separation h = 400, where

at the mldpolnt the density Is equal to the bulk fluld density, n,. Then,
solutlons for decreasing pore wildth were found uslng the previous solu-
tlon at larger h as a first guess for the next width. Pore width was gradu-
ally decreased to h = 2.250 using small enough steps to ensure that qua-
dratlc convergence was observed at each new pore width, Step slzes
ranged from a few ¢ 's to 0.050.
Local Average Density Model (LADM) of Transport. In the spirlt of the
Fischer-Methfessel local average denslty model, Equation 4, for the palr
correlation function of Inhomogeneous fluld, a local average density
model (LADM)]) of transport coefficlents has been proposed (5) whereby
the local value of the transport coefficient, A(r), 1s approximated by

A(r) =X\°(n(r)) (17)

2°(n(r)) is the transport coefficient of homogeneous fluld at the local
average density n(r).

According to thls model the diffusivity of a molecule at positlon x in
the planar pore system of Interest in thls paper is D°(n(x)) and so the
pore diffuslvity Is

h h
D pore = f n(x)D°(n{x))dx/[ n(x)dx (18)
0 0

slnee D°(n(x))n(x)Adx/N Is the probable diffusivity of a particle lylng
between X and x 4+ dx in the pore.

The stress tensor 7 according to LADM 1Is
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r(n) =R [o5 4 o3|+ neam) - Zno(Em)lv vt (19

where V 1s the mean flow veloelty, V" Is the transpose of Vv, #°(11) and
nﬁ’(ﬁ) the shear and bulk viscoslty coefficlents of homogeneous fluld at
denslty 1.

The attractlve feature of LADM Is that once the fluld structure Is

known (e.g., by solutlon of the YBG equations glven In the previous sec-
tlon or by a computer slmulation) then theoretlcal or empirical formulas
for the transport coefficlents of homogeneous flulds can be used to predict
flow and transport ln Inhomogeneous fluld. For diffusion and Couette
flow in planar pores LADM turns out to be a surprisingly good approxi-
mation, as will be shown In a later section.
Enskog Theory of Transport. Enskog's theory of hard spheres, with
introduction of a temperature dependent hard sphere dlameter, gives
surprisingly accurate estlmmates of the diffusivity and viscoslty of real flulds
(8). This Is because In simple flulds the short-ranged repulsive forces
between molecules dominate In the collislonal dissipation leading to tran-
sport phenomena. The long-ranged attractlve Interactlons contribute
importantly to the energy of the fluld, and thus to phase transitlons and
interfaclal structure, but apparently are less effective 1n collisional disslpa-
tlon. With this view of fluld behavior Enskog's theory of transport in
bulk fluld has been generalized to strongly inhomogeneous flulds.

Conslder a fluld of molecules interacting with pair additive, centrally
symmetric forces in the presence of an external fleld and assume that the
colllsional contributlon to the equation of motlon for the singlet distribu-
tion functlon 1s glven by Enskog's theory. In a multicomponent fluld, the
distribution function fl(r,vi,t) of a particle of type 1 at positlon r, with
veloclty v; at time t obeys the equatlon of change (7)

ar, L
W"‘Vi * ij— ‘I—n— AVA Nl Vvifi

1

1
m; [vuf(e-r) - v ffg(rr, v)d® r'ddy,
1

R
]

=2
)

f [gij( r.r+ o K)f(rv/, H(r + ok, v/, t)
k >0

vy

~ gy(rr - o KRV Of(r - ok v )] o 2vkd?kddy;  (20)

where 7 and v, are gradlent operators with respect to r and v, m;
molecular mass, u the potentlal of the external force, ui’j\ the palr poten-
tial of attractlve forces between partlicles of types 1 and j, g;; the palr corre-
lation function between 1 and J, o; = (0 + 0;)/2, o the hard sphere
diameter of 1, k a unlt vector directed from the center of 1 to that of },

and vi' the velocity of 1 after a hard-sphere collision with J. We recall that
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v{ =v; - vikk, where v;; = v; - v{(7). The aftractlve Interactlon u{f‘ Is
assumed to be sufficlently slowly varylng that it does not contrlbute to col-
lisional dissipation.

The local density n; of specles 1 Is related to the veloclity distribution
functlon by

n(r,t) = [ t;(r,v,t)d%; (21)
At equillbrtum the distribution function 1s of the form
f, =n1(r)¢i(vi) (22)

where ¢; 1s the Maxwell veloclty distribution functlon,

m P2
N _ 2
&(vy) _[QWkBT] exp(— mv?/2kgT) (23)

With this distribution function, velocity factors out of Equation 20 yleld-
ing the exact YBG equation, Equation 3, for equlllbrium flulds whose
Interaction potential Is glven by Equation 1.

The Chapman-Enskog method has been used to solve for steady state
tracer diffuslon (8). According to the method the singlet distribution
function for the diffusing specles 1, present in a trace amount (n, << n;, |
76 1) In an otherwlse equlllbrium fluld, Is approximated by

I, =n(r)é,(vy) [ 1+ a(r)v;] (24)

and a,(r) Is obtained from the Enskog equatlon. The result for the linear-
1zed diffuslon flux J, of specles 1:

J, =[1,v,d%, =- nfkgT¢; '+ vin(n,/nf) (25)

where ¢, Is the frictlon tensor,

m, [ 2rkgT 1/2 o 2 2
§i(r) = —f——] [eglrnr+o Knl(r+0,k)o Fkka®k (26)
1 T 1j
m, = mlmj/(m1+mj), gli(r,r+cr ljk) the equilibrium palr correlation funec-

tlon, n(r) the equillbrlum denslity distributlon of specles 1, and n,(r) the
diffusive density distribution.

As expected from continuum theory, the friction and diffuslon
coeficlents are replaced In Inhomogeneous fluld by tensors whose sym-
metry reflects that of the Inhomogeneous media.

For the speclal case of self-diffusion (tracer molecules dynamically
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1dentical to solvent molecules) in the y-directlon in a planar pore, it fol-
lows from Equation 25 that the pore average flux obeys (9)

h

1 dnpore
Joore =—f Jpydx =- Do ,———— (27)
pore 1y pore
h - dx
h
where ny,=h"'{ n,dx and
[¢]
h h
Dpore=fDT(x)n°(x)dx/f n°(x)dx (28)
[s] o
D {x), the local diffusivity parallel to the pore walls, Is glven by
(kgT/mm)/?
D (x) =—— =
(29)

10? [ £°(0 M°(x + T-6))n°(x + 0 £)(1 - €)a¢
-1

a result enabling one to calculate the pore diffusivity from the equlilbrium
denslity distribution function.

Equation 28 Is slmllar to the LADM formula for pore diffusivity,
except that in LADM D (x) Is replaced by

1/2
DO(R(x)) =BT (30)
(802/3)2°(a .a(x))A(x)

The Chapman-Enskog theory of low In a one-component fluld ylelds
the followlng approximation to the momentum balance equation (10).

N8 + VUV + —vut — vP =- M;:yV + M,iv vV (31)
m

where P 1s the local pressure tensor and M, and M, are third and fourth
rank tensors accounting for viscous dlsslpation. In isotrople fluld P = PI,
I the unlt tensor, M, =0 and M, 1s a fourth rank isotroplc tensor. The
symmetrles of P, M, and M, depend on the symmetry of the Inhomo-
geneous fluld. The general Chapman-Enskog formulas for M;and M, are
very compllcated and wlll not be recorded here. However, If the devia-
tlon of the veloclity distribution functlon from its local Maxwelllan form
(¢ = (m/2mkpT)®? exp[- m(v - ¥(r))%/kgT)]) Is neglected, the following
relatlvely simple formulas are obtalned (10)
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mkgT

1/2
M;(r) =[ ] o3n(r) [ n(r + ok)g(r,r + ck)kkkd’k  (32)

mkgT ) \
M, = - o*n(r) [ n(r + ok)g(rr + o k)kkkkd’k (33)

These formulas become increasingly better approximations as the denslty
Increases (11).

For the steady, planar Couette flow to be examined in a later section,
the momentum balance equation ylelds

dut dPy
n =0 34
dx + dx (34)
and
8v, %%,
0 =M1(X)—a-x— —+ Mz(X) 3)(2 (35)
where

1
M, (x)=2(7 mkpT) 20 3n(x) [ n(x+0 &)g(o ;x,x+0 €)(1- £2)€dé (38)

-1

1
M,(x)={(7 mkgT)2o*n(x) [ n(x+0 )g(o;x,x+0 §)(1- £2)€2d€ (37)
-1

It can be shown that Equation 34 Is the YBG equation determining the
density distrlbution n(x) of the fluld. With the Fischer-Methfessel clo-
sure, the denslty distribution Is all that 1s needed to calculate the
coefiiclents M ,(x) and M,(x). Integrating Equatlon 35, we find

X

de"Q(X")
Vy(x) =Vy(0) + [Fy(h) = Vy(o)] 57— (38)
deHQ(XII)
where
Q(x") =exp [~ [ ax'M;(x')/M,(x")] (39)
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LADM also leads to Equation 35, but with Mlzdno(ﬁ(x))/dx and
M,=7°1n(x)), which ylelds

[ ax’[ne(n(x"))}?
Vy(x) =v,(0) + [¥(h) - V(o) + (40)
[ ax’[ne(a(x")]

o

The theorles of structure and transport outlined above will be com-
pared with molecular dynamics in what follows.

Molecular Dynamics

Equllibrlum Stmulatlon. The equllibrium simulatlons described here were
carrled out by Magda ef al (12). The pore walls modelled are two flat,
seml-infinite solids separated by a distance h In the x-dlrectlon. The
wall-fluld potential s the 10-4 or 10-4-3 potential, l.e.,

V28
— i 10 4
¢w(x) EW{O 4(dw/x) (OW/X) + 3(X/0'w + 0.61/\/5)3} (41)

where 6 = 1 Iln some slmulatlons and & = 0O In others. The particle-
particle potential energy 1s chosen to be the truncated 6-12 Lennard-Jones
potentlal

u(r) =¢ry(r) - dpryre) , r<r,

=0, r>r, (42)

opyr) =dc||l—] - |— (43)
r r

€ and o are energy and particle slze parameters and r, Is the truncation
distance (typlcally taken to be 2.5 to 3.5¢ In computer slmulatlons).

The temperature, pore wldth and average pore densltlies were the
same as those used by Snook and van Megen In thelr Monte Carlo simu-
latlons, which were performed for a constant chemlcal potentlal (13).
Perlodic boundary conditlons were used In the y and z directions. The
periodic length was chosen to be twice r,. Newtlon's equatlons of motion
were solved using the predictor-corrector method developed by Beeman
(14). The local fluld density was computed form

where
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n(x) =0 - %) (44)

where A 1s the area of a pore wall and N(0 — x) Is the long time aver-
age of the number of molecules found between 0 and x. The normal
pressure exerted by the fluld on the pore wall was computed from

1 N du®(x,
Py=— < - e
2A o &
h
1 du®(x)
= - —| n{xX)————dx 45
R (45)

or the Irving-Kirkwood pressure tensor mentioned below (15). <--->
denotes an ensemble average or a long-time average (used in molecular
dynamics).

The self-diffuslon coefficlent parallel to the pore walls was computed
form the mean square particle displacement,

N
Dpsre = 10 3300 < (900 -~ W(O)17 + [4() = 501> (40)

and the Green-Kubo formula

o0}
1
Dpore:?f ["L’y(t’) + ¢z(t’)]dt’ (47)
0
where the veloclty autocorrelation function ,(t) I1s defined by

N
A = B <V VL0)> L v =X, ¥, or 2 (48)
i=1

Couette Flow Slmulation. MD typlcally slmulate systems at thermo-
dynamic equilibrium. For the simulatlion of systems undergoing flow vari-
ous methods of nonequlilibrium MD have been developed (16, 17). In all
of these methods the viscosity 1s calculated dlrectly from the constitutive
equatlon.

The nonequlllbrium MD method we employed (5) s the reservolr
method (168) which simulates plane Couette flow. The effective viscoslty
is calculated from the constitutive relation

Txy :nerr")’ imp (49)

where 7., Is the xy component of the stress tensor, 7.gy an effectlve
.
coeflicient of shear viscoslty, <y, 1s the imposed shear rate.
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In thls method the llquld of Interest is sheared between two seml-
infinite reservoirs. The reservolrs contaln particles ldentical with the ones
in the maln Hquld slab and at the same denslty. The reservolr particles
and the particles of the maln llquld slab Interact by exerting forces on
each other but they do not mlx because they are separated by impenetr-
able hard walls extending on the yz plane. Therefore, the reservoirs are
fluld-like and conflne the maln llquld slab in the x direction. Desplte
appearances, the maln llquid slab behaves llke a bulk fluld because the
reservolrs Induce no significant structure In the conflned liquld. Further-
more, the hard impenetrable reservolr walls are not to be confused with
the flat 10-4 LJ pore walls mentioned In the previous subsection.

The flow is induced in the following way. External forces are applled on
the particles of each reservolr In order to Kerp the average y veloclities of
the reservolrs constant. The Imposed motion of the reservcirs shears the
Itquid slab. The work supplled in order to keep the reservolrs moving
eventually 1s disslpated and heats up the llquld. In order to remove thls
extra heat from the system the velocitles of the reservolr molecules are
scaled at each time step so as to keep the average reservolr temperatures
constant. The Imposed shear rate Is obviously

':/ imp =(Vy,u_ Vy,l)/s (50)
where, Vy'u 1s the average veloclty of the upper reservolr partlicles, \7},,, the
average veloclty of the lower reservolr particles, and s the wldth of the
maln liquid slab.

Depending on the density In the visclnlty of the reservolr walls some
slip might be observed. Therefore, the actual shear rate that the liquid
slab experlences might be lower than the Imposed one. This actual shear
rate 3 1s determined emplrically from the slmulatlon by calculating the
average veloclty of the llquid slab particles which are located next to the
reservolr walls. The actual shear rate fy rather than the Imposed shear rate
ﬁimp Is to be used In Equatlon 49 for the calculation of the effective
VISCOSItY 7.

The structure 1s induced by a pore wall potential, which has the form of
the potential used in the equillbrlum simulations (Equation 41) with § =
0, ¢, = 4€ and 0, = 0, (€, 0 are the parameters of the truncated 12-6
L J potential of the palr Interactions of particles In the main liquld siab and
the reservolrs.)

The arrangement described above allows one to turn off the flow
and/or the wall potentlal at will and, therefore, to simulate bulk fluld and
fluld confined between planar mlicropore walls both at equillbrlum and
under flow.

We simulated two systems: (1) bulk fluld (no wall potential) at equill-
brium and undergoing Couette flow, and (2) fluld conflned between
planar micropore walls at equilibrlum and undergoing Couette flow.

The location of the pore walls does not colncide with the locatlon of
the reservolr walls that confine the partlcles of the main liqulid slab. This
was done Iln order to minlmize the sllp at the reservolr walls as explalned
in detall In Reference (5).
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In the flow simulatlons we address the followling issues:

e the effect of density structure on the flow properties, such as the
flow velocity proflle, the shear stress and the viscoslity, by comparing the
bulk and the structured systems under flow.

o the effect of flow on the denslty structure and the diffusivity by
comparing the denslty proflles and the diffusivitles of both systems at
equilibrium and under flow. Furthermore, we compare the two
diffusivities on the plane parallel to the reservolr walls, l.e., the
diffusivity in the directlon of flow and the one normal to the flow, for
both systems undergoing flow.

e the effect of structure on the diffusivity by comparing the
diffusivities of the structured and the bulk system at equlllbrium.

The denslty profile for the micropore fluld was determined as in the
equiltbrlum simulatlons. In a slmllar way the flow velocity proflle for both
systems was determlined by dividing the liquld slab Into ten slices and cal-
culating the average veloclity of the particles in each slice. The veloclty
proflle for the bulk system must be linear as macroscoplc fluld mechanics
predlict.

The diffusivities parallel to the pore walls at equllibrlum were deter-
mined form the mean square particle displacements and the Green-Kubo
formula as described in the previous subsection. The Green-Kubo For-
mula cannot be applled, at least In principle, for the calculation of the
diffustvity under flow. The diffuslvity can be still calculated from the
mean square particle displacements provided that the part of the dlsplace-
ment that Is due to the macroscople flow 1s excluded. The presence of
flow In the y direction destroys the symmetry on the yz plane. Hence the
diffusivitles In the y directlon (parallel to the flow) and the z direction
(normal to the flow) can In principle be different. In order to calculate
the diffusivities the part of the dlsplacement that Is due to the flow must
of course be excluded. Therefore,

N 1 —
E?{ < [y(t) = vt~ y(0)]* > (51)

1
D = lilm —
y.pore
t— i=1

o N

where v Is the flow veloelty at the location of particle 1 and

L

D = Ilm
z,pore s N

N ,
EE < [2i(t) - 2(0)]* > (52)
=5

since there 1s no flow in the z directlon.

The shear stress Is unlform throughout the main liquid slab for
Couette flow (5). Therefore, two Independent methods for the calcula-
tion of the shear stress are avallable; 1t can be calculated elther from the y
component of the force exerted by the particles of the liquid slab upon
each reservolr or from the volume average of the shear stress developed
Inside the liquld slab from the Irving-Kirkwood formula (15). For rea-
sons explalned In Reference (5) the slmpler verslon of this formula can
be used !n both our systems although this verslon does not apply In gen-
eral to structured systems. The Irving-Kirkwood expresslon for the xy
component of the stress tensor used in our slmulation Is
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Ny
7'xprore =< vax,i(vy,i" Vy(yi))
i=
. N Ny N,
3 ¥ x- %IFF + 39 (% Xaps)FY (53)
j k=1 j=1k=

where,?xy Is the average shear stress over the maln liquld slab

Vipore 18 the volume of the maln llquld stab.

N, I1s the number of particles 1n the maln liquld slab

N, Is the number of particles In both reservolrs.

Vy,pVy,i are the x and y components of the veloclty of particle 1
vy(yj) is the y component of the flow veloclty at the

current posltion of particle 1

X;,¥; are the x and y coordlnates of particle 1

Xgps Is the location of the Gibbs dlviding surface between the maln
liquid slab and the reservolrs.

Dlscussion of Results

Equlllbrlum Systems. Magda et al. (12) have carrled out an equiilbrium
molecular dynamles (MD) stmulation on a 6-12 Lennard-Jones fluld n a
slit pore described by Equatlon 41 with § == 1 with fluld particle interac-
tlons given by Equatlon 42. They used the Monte Carlo results of Snook
and van Megen to set the mean pore density so that the chemical poten-
tlal was the same In all the simulations. The parameters and condltions
set In thls work were ¢, = 27¢, 0, = 0, r, = 3.50, kT/e = 1.2, and
nb03 = 0.5925. ¢ and o are the L.ennard-Jones parameters of the fluld
and ny Is the denslty of a bulk phase 1n equlltbrlum with the pore fluld.

To compare molecular theoretical and molecular dynamics results, we
have chosen the same wall-particle potential but have used the 8 - oo fluld
particle potential, Equation 14, Instead of the truncated 8-12 LJ potential.
This Is done because the molecular theory Is developed In terms of attrac-
tlve particles with hard sphere cores. The parameter u* In Equation 8 Is
chosen so that the density of the bulk fluld in equilibrium with the pore
fluld 1s the same , n,o® = 0.5925, as that In the MD slmulations.

Figure 1 typifles the agreement found between the fluld denslty
profiles predicted by Equation 8 and that obtained In the MD simulations.
For thls example the porewldth equals 40. The fluld density distributlon
has three large peaks (the maxilmum bulk density possible for a
Carnahan-Starling fluld 1s nba3=6 /m 1.9) Indlcating a strong layering
effect of the pore walls on the conflned fluld.

The number and sharpness of fluld layers depend sensitlvely on the
porewldth as Is illustrated by the theoretical results (which agree qualita-
tively with simulations) plotted In Flgure 2. As porewldth Is Increased
from say h = o, there appear one, two, three, etc. denslty peaks. A tran-
sitlon from N to N + 1 peaks occurs as the porewldth varles from a value
at which N layers are favored to a value at which N + 1 are favored. A
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quantlty which measures this tendency s the so-called restricted pore
average density.

h
1

Nyye =h——2zfo n(x)dx (54)

where A Is the thickness of the region near the pore wall which Is empty
of particles (A = 0.80 for the wall potential used here). Predicted and
simulated values of n,,, are plotted in Figure 3. n,,, has local maxima
where a given number N of layers Is favored and local minima where this
number s not favored. For example, one layer Is favored at h = 1.950
and two layers are favored at h = 2.950, as wltnessed by local maxima In
N,.., Whereas the local minimum between 1.95 and 2.950 Indlcates a
defectlve layering 1.95 and 2.950 state ln which nelther one nor two
layers are optimal. Thls behavlor can be seen In Flgure 2 in whilch the
two density peaks decrease dramatically as the pore width Is decreased
from h = 2.950 to 2.8600.

In the slmulatlons the maxima and minima of n,,, are shifted w
slightly smaller porewldths compared to predictlons of the theory. Thlis
trend 1s consistent with the fact that the 6-12 Lennard-Jones potential 1s
not Infinitely repulsive at an interparticle separation of o, whereas the 8-
oo potentlal 1s Infinltely repulsive at o.

It 1s now well established experimentally that the solvation force, fg, of
confilned fluld Is an osclllating function of pore wall separation. In Flgure
4 we compare the theoretical and MD results for f; as a function of h,
Glven that pressure predlictlons are very demanding of a molecular
theory, the observed agreement between our slmple theory and the MD
simulatlons must be vlewed as qulte good. The local maxima and minima
In f; colncilde with those In n,,, and therefore also reflect porewldths
favorable and unfavorable to an Integral number of fluld layers.

Simllarly, the pore diffuslvity D ... (Flgure 5) has local maxima and
minima resulting from the layering structure of the conflned fluld. As
one mlght expect the local maxima and minlma ln D colnclde with the
minlma and maxima in n,,.

In Figure 5, the MD results are compared with predictions of the
Vanderlick-Davis extenslon of Enskog’s theory and with LADM predie-
tions uslng for D° the Epskog formula, Equation 30, and the theoretlcal
denslity proflle. The extended Enskog theory and LADM agree qulte well
with one another and are In qualitatlve agreement with the MD results.
The maxima and minima of the MD results are shifted to smaller
porewldths because of the softer core of the 6-12 LJ potential as com-
pared to the 6-00 potentlal. For the same reason, the bulk diffusivitlies of
the theorles are lower than that of the simulatlon. If, as {s done In apply-
ing the Enskog theory of bulk phase transport coefficlents to real flulds,
we choose for the 6-00 model an effectlve dlameter 0,4 the agreement
between theory and simulatlon can be Improved. For example, with o .4
= 0.872¢0 Enskog’'s dlffuslvity of bulk fluld agrees wlth the simulatlon
and lmproved agreement pore dlffusivitles result (Figure 8).

Beyond a porewldth of about 120, the theory and the MD results

pore
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agree that the fluld profile Is fully developed at each pore wall and further
wall separation stmply recruits more almost bulk fluid the milddle reglon
of pore with very lttle change in the density proflle of the four or flve
layers near the pore wall.

Flow systems. In this subsection we present the results of our Couette
flow simulatlons. Most of these results were first presented In Reference
(5).

1) Density profiless The density profiles for the bulk fluld and the micro-
pore fluld are shown In Flgures 7 and 8. We first note that the density
profile for the bulk fluld Is unlform throughout the pore except from a
very narrow reglon next to the reservolr walls. But even there, the den-
sity gradlents are entirely Insignificant compared to the extremely strong
denslty gradlents of the micropore fluld caused by the pore wall potential.
Therefore, we conclude that the presence of the reservolrs does not
induce any signlficant structure in the fluld.

The density proflle for the micropore fluid Is highly structured, show-
Ing substantial fluld layering. The local average denslty proflle (see Sec-
tion 1) of this system lIs also shown in Flgure 8. A very Important feature
of the local average density that results from the smoothing procedure
involved In Its calculatlon is that it varies slowly and remains bound to
physically possible homogeneous fiuld denslties. This Is essentlal If one is
to employ some theory for the viscoslty of homogeneous flulds to predict
local viscosltles and flow veloclty profiles as explalned in Section 1. From
Figure 8 we see that the local average density of the mlcropore fluld is
everywhere lower than the hard-sphere closest packing density (\/5/03)
and the maximum density for the solution of the Percus-Yevick equation
(6/mo3).

Although only one density profile Is shown In each of Figures 7 and 8

the density proflles of the two systems both at equillbrium and in the
presence of flow that have been determined. A conclusion of great mpor-
tance that s suggested by the Couette flow simulations s that the density
profiles of the two systems n the presence of flow coincide with the equilibrium
denstty profiles, even at the extremely high shear rates employed in our simula-
tion. A detalled statlstlcal analysls that justifies this polint was presented in
Reference (5).
W) Diffusivities. Our results for the dlffusivitles of both systems are sum-
marized In Table I. The pore average transverse diffusivity for the bulk
fluld at equllibrium agrees very well with experlmental and simulation
values for the diffusivity of Argon at the same denslty and temperature
(18.12,5).

As explalned In Section 1 three diffusivities were calculated for each
system. These were the equlllbrium transverse diffusivity and the two
nonequilibrium (flow) diffusivitles parallel and normal to the directlon of
flow. As we can see from Table I, they all agree with each other within
the llmlts of statlstical uncertalnty. We conclude, therefore, that the flow has
no effect on the diffusivity even at such high shear rates as the ones employed
n our simulation. At even higher shear rates a signlficant dependence of
the diffusivity on the shear rate has been reported (19) but one should
conslder that our shear rate Is already orders of magnitude higher than the
ones encountered In realistic flow situations.
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Table 1. Diffusivitles. Unlts are (o %e/m)'/?

Bulk Fluld Micropore Fluid
Simulation
equilibrium 0.1094 0.002 0.107+ 0.002
paralliel to the flow 0.1094 0.003 0.114+ 0.004
normal to the flow 0.1094 0.002 0.1134-0.003
Experlment 0.111
LADM
using Enskog theory 0.107
using emplirical formula 0.112
Extended Enskog 0.108

As shown In Table 1 the LADM predictions agree very well with the
simulation results. The first of these values employed the Enskog hard-
sphere theory for homogeneous flulds for the prediction of the local
diffusivitles. The second value employed an emplrical formula that fits
MD results for the diffuslvity of liquid Argon (3,18). As we can see
much of the dlsagreement Is due to the Inaccuracy of the Enskog theory
and not to the LADM. The third value is the predictlon of the generall-
zatlon of the Enskog theory for tracer diffusion in strongly Inhomogene-
ous flulds (8,8). This value also agrees very well with the slmulation
result.

A flnal polnt has to do with the relative Insensitivity of the pore aver-

aged diffusivity on the density structure. Both the LADM and the gen-
erallzed tracer diffuslon theory provide a rational explanation for thls fact.
The reasons for the insensitivity may be ldentifled In the double (triple
for the tracer diffuslon theory) smoothlng induced by the volume averag-
Ing and by the very nature of the molecular Interactions in liquids which
makes some type of averaging over the denslties In the nelghborhood of a
certaln polnt necessary.
1)  Velocity profiles. The velocity proflles for the bulk fluld and the
mlcropore fluld are shown in Flgures 9 and 10. The proflle for the bulk
system s llnear In agreement with the macroscopic predictlon of fluld
mechanlics. This fact shows that the flow propertles of our first system are
identlical with the ones of a bulk fluld, despite the presence of the reser-
volrs.

The veloclty profile for the mlcropore fluld exhiblts large devilatlons
form linearlty. An eXtremely Important point which motivated the
development of the LADM 1s the clear correlation between the velocity and
the density profiles of the micropore fluid. One can easily distingulsh two
reglons of low slope (shear rate) next to the reservolr walls and a center
region of high slope. These clearly correspond to the two large denslty
peaks next to each reservoir wall and the low denslty center reglon of the
denslty proflle. The theoretical veloclty profile predlcted from the
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LADM 1is also shown in Figure 4. It agrees with the simulatlon proflle
almost within the llmits of the statistical uncertalnty.

In Figure 10, we present flow veloclty predictlons of the hligh density
approximation, Equations 32 - 33, 38 and 39, of Davls' extenslon of
Enskog's theory to flow in strongly iInhomogeneous flulds (10). The velo-
city proflle predicted In this way 1s also plotted In Filgure 10. The
predicted profile, the simulated proflle, and the profile predicted from the
LADM are quite similar.

Finally the knowledge of the veloclty proflles allows the determination
of the actual shear rate exerted upon the liquld slab. For the bulk system
some slip is observed at the reservoir walls. No sllp Is observed for the
micropore fluld as a result of the high denslty close to the reservoir walls,
which facllitates the momentum transfer between the reservolr and the
llquld slab particles.
tv) Shear stress and viscostty. As explained In Section 1 three Independent
estimates of the shear stress can be made for this particular type of fiow.
For both systems they all agree within the llmits of statlstical uncertalnty
as shown In Table II. The shear stress In the mlcropore fluld 1Is
significantly lower than the bulk fluld, which shows that strong density
mhomogeneities can induce large changes of the shear stress.

For the bulk system the constitutive equation

n =Txy/ﬁ (55)

is rigorously valld. The simulation result for the viscosity of the bulk sys-
tem agrees wlth the experimental argon viscoslity within the llmlts of the
statistical uncertalnty.

If one Insists on Equation 55 for the micropore fluld an effective
viscosity (which Is an experimental observable) must be used Instead, l.e.,

Nest :Txy/;y (56)

The slmulatlon value for the effectlve viscoslty 1s almost half the viscoslty
of the bulk fluld. According to the LADM the effective viscosity for
plane Couette flow can be identlfled as

8

neg=s"'{ [n°(n(x)]” 'dx (57)

(o]

where s Is the distance between the reservolr walls, n(x) the local average
denslty at x (defined by Equation 9), and °(1n(x)) Is the local viscoslty at
X, l.e., the homogeneous fluld viscosity at density H(x)

Two predictions of the LADM for the effectlve viscosity are shown In
Table 1I. The first was made by using the Enskog hard-sphere theory for
the calculation of the local viscositles. It agrees quallitatlvely with the
simulatlon result In that it predlcts a large decrease of the effective viscos-
ity as a result of the density structure. For the second prediction the local
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Table II. Shear stress and viscosity

Bulk fluld In planar Couette flow
Shear Stress Shear Rate Viscosity

Simulation

force on upper reservolr 0.182

force on lower reservolr 0.180

Irving-Kirkwood formula 0.181

average 0.18140.004 0.149+ 0.005 1.214+0.04
Experlment 1.23
Enskog 1.14

Micropore fluid In planar Couette flow
Shear Stress Shear Rate Viscosity

Simulatlon

force on upper reservolr 0.119

force on lower reservolr 0.122

Irving-Kirkwood formula 0.122

average 0.121+ 0.008 0.186 0.65+ 0.02
LADM

using Enskog theory 0.77

using emplrical fit 0.70

Unlts ejo? (e/mo?)'?  (me)2c?

viscoslitles were calculated from an emplrical formula (23) that fits experi-
mental value of the argon shear viscoslty over a wlde range of densitles
and temperatures (20,21). The agreement with the slmulatlon result Is
much better, which suggests that much of the discrepancy Is a result of
the poor Enskog predictions at hlgh densitles and not a deficlency of the
LADM.

A flnal comment has to do with the concept of effective viscoslty in
strongly Inhomogeneous flulds. For these systems the deflnltion of the
effectlve viscosity depends on the type flow, hence different effective
viscosltles will be measured for dlfferent flow situations In the same sys-
tem with the same denslty proflle. Therefore, the effectlve viscoslty is a
concept of llmited value and measurements of this quantity do not pro-
vide much Information about the effects of denslty structure on the flow
behavior.
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