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Grand canonical Monte Carlo simulations were carried out to examine phase transitions of rigid lattice objects.
The objects studied are coarse representations of planar, spherical, cubic, and cylindrical shapes on a simple
cubic lattice. Multihistogram reweighting methods were used to generate the phase diagrams; critical points
were determined using finite-size scaling methods. Spheres and capped cylinders exhibit a first-order transition
from fluid to crystalline phases in the athermal limit. Small cubes and planar structures show continuous
order-disorder transitions. For a six-armed cross object, there is evidence of a metastable vapor-liquid-
phase transition lying within the fluid-solid-phase envelope.

1. Introduction

Currently, there is a great deal of interest in the synthesis of
small particles of a predetermined size and shape for use as
building blocks in the fabrication of electronic and biomedical
devices. Simple shapes such as cubes,1 rods,2 and tetrahedra3

can be made at nanometer length scales with high precision.
Given the difficulty inherent in manipulating objects of this size,
much effort has gone into adding functional groups so that,
under a specified set of conditions, these nanoparticles arrange
themselves into useful mesoscale structures such as wires or
sheaths.4 Amphiphilic particles similar to naturally occurring
lipids and surfactants self-assemble into aggregates much like
those of their biological counterparts.5

Simulations and theory regarding ordering and phase transi-
tions in systems of regularly shaped two- and three-dimensional
particles began with the work of Onsager.6 Hard spheres have
received most attention,7-9 but shapes including cubes,10

spherocylinders,11,12 and more irregular objects13 have been
studied using a number of intermolecular potentials and at the
athermal limit. Tethered nanocube particles were recently studied
by simulation.14 The vast majority of these simulations were
done in continuous space. Lattice simulations, though compu-
tationally less demanding than their continuum counterparts,
often suffer from artifacts that are a consequence of the artificial
ordering imposed by the lattice. However, recent work with fine
lattice models has shown that the continuum behavior of ionic
particles can be reproduced with only a small degree of
discretization.15 Rigid lattice structures have also been used
successfully to model the thermodynamic properties of polymer
melts.16

In this work, we examine the phase behavior of eight rigid
objects constructed from a collection of adjacent sites and
confined to a cubic lattice. Phase transitions between fluid and
solid phases are obtained for the case of objects with nearest
neighbor attractions and for noninteracting hard particles. It is
particularly fitting that this paper is part of the special issue in
honor of Eduardo Glandt, one of the pioneers of the use of
innovative Monte Carlo methods for direct calculations of phase
equilibria.17

The remainder of this manuscript is arranged as follows. In
Section 2, we describe our model objects and the simulation

techniques used to obtain the phase behavior and the equation
of state at both the athermal limit and at finite temperatures. In
Section 3, we present the results of our investigation and
compare them to continuum models, theory, and prior results
for flexible lattice chains. Finally, we draw some conclusions
and discuss possible future applications of the rigid lattice
objects to the study of more complex molecular systems.

2. Models and Simulation Method

2.1. Models.The objects studied are composed of multiple
sites, as listed in Table 1. We identify objects by a letter
indicating the geometry and a subscript indicating the number
of sites. We have studied multisite objects that belong to four
general categories, namely: (a) planar rigid objects (P4 and P8),
(b) compact rigid objects with sites within a certain radius from
a central point (R7, R8, R19, R27, and R33), (c) a cylindrical object
(C22), and (d) flexible chains of length 4 and 8 (T4 and T8).
The flexible chains have links between successive segments that
can be along vectors (0,0,1), (0,1,1), (1,1,1), and their reflections
on the cubic lattice, resulting in 26 possible directions (coor-
dination numberz ) 26). Attractions of unit strength exist
between sites along these 26 possible directions. This is
equivalent to a square-well attraction between sites that are at
distances less than or equal tox3 times the lattice spacing.
The total interaction between two rigid objects is calculated from
pairwise summation of site-site interactions. We have also
studied a single case of nearest-neighbor interactions only (z )
6, maximum distance for attraction equal to the lattice spacing).
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Table 1. Models Studied
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2.2. Simulation Method. We use grand canonical Monte
Carlo simulations combined with multihistogram reweighting,
as described previously.18 In brief, the simulations to compute
vapor-liquid equilibrium are performed in cubic boxes of size
L × L × L under periodic boundary conditions. For structures
which exhibit a crystalline phase (C22, R7, R19, and R33),
simulations were first carried out in a large cubic box (typically
L ) 25) to determine the underlying structure of the dense phase
and then repeated in a box of sizeK × L × M to ensure that
the density of the crystalline phase was not affected by defects
resulting from the periodic boundaries. The lattice spacing is
taken as the unit of length. The inverse temperatureâ ) 1/kT,
chemical potentialµ and volumeV ) L3 (or V ) KLM) are
input parameters to a single simulation run. Temperatures,
energies, and chemical potentials are nondimensionalized by
the nearest neighbor interaction strength and length with the
lattice spacing. The chemical potential reference state is that of
an ideal gas with no interactions, so that at low densities the
relationship

holds, withF ) 〈N〉/V, whereN is the number of molecules.
For the case of flexible chains (T4 and T8), the reference state
is the non-self-avoiding random walk, so that even in the case
of athermal systems the self-avoidance of the chain is manifested
by deviations from eq 1.

Results from multiple runs with overlapping distributions of
the particle number histograms (and energy histograms in the
case of systems with interactions) are combined using the
approach of Ferrenberg and Swedsen.19,20 Determination of
critical points for vapor-liquid-phase transitions is performed
with the mixed-field finite-size scaling approach of Wilding and
Bruce21-23 assuming no pressure mixing in the critical fields.24

The pressure was determined from the relationship ln¥ ) âPV,
where¥ is the grand partition function. While the absolute value
of ¥ cannot be obtained, the ratio of the partition function for
two overlapping runs, and thus the difference in pressure can
be determined. The absolute value of the pressure can be
obtained by including simulations at low values of the chemical
potential so that the particles are ideal gases.

3. Results and Discussion

Figure 1 shows phase envelopes and critical points for the
cubic-shaped objects R8 and R27sstatistical uncertainties in this
figure and all others herein are smaller than the symbol sizes
shown. The liquid is stabilized at higher temperatures, as
expected, with an increasing range of attraction. Although the
critical densityφc of the R8 system is essentially unchanged
between thez ) 6 (nearest neighbor interactions only) andz )
26 lattice, the critical temperatureTc increases by a factor of 6,
as seen previously for flexible chains.31 Likewise, the critical
temperature of the R27 system is more than twice that of the R8

system for the same coordination number. Differences between
planar objects and fully flexible chains of equal size are more
modest. Figure 2 shows a difference of∼10% in Tc and 20%
in φc when comparing structures comprised of both four and
eight monomers. Critical points for these transitions are tabulated
in Table 2. A similar modest increase inTc has been observed32

as the degree of chain stiffness was increased for linear chains.
Simulations were also performed with the same systems at

the athermal limit (â f 0). The pressure vs density data for
this case are illustrated in Figure 3. Continuous ordering
transitions occur at volume fractions ofφ ) 0.92, 0.87, and

0.70 ((0.01) for the P4, P8, and R27 systems, respectively, as
indicated by the inflection points on the isotherms. These
continuous transitions are possible because of the presence of
the underlying lattice, as even for an overall positionally

âµ f ln F for F f 0 (1)

Figure 1. Phase diagrams for R8 with z ) 6 (circles,L ) 16) andz ) 26
(triangles,L ) 16) and R27 (diamonds,L ) 24) with z ) 26. Lines are
drawn through points for visual clarity.

Figure 2. Phase diagrams for P4 (triangles), P8 (squares), T4 (diamonds),
and T8 (circles) withz ) 26 andL ) 16. Lines are drawn through points
for visual clarity.

Table 2. Critical Points for Gas-Liquid Transitions of Rigid
Objectsa

model Z L Tc âcµc φc

P4 26 10 11.14(2) -4.002(5) 0.430(1)
16 11.15(2) -4.000(6) 0.428(9)
20 11.14(2) -4.003(7) 0.427(2)

T4 26 10 9.84(2) -4.127(2) 0.374(8)
16 9.85(1) -4.123(2) 0.370(1)
20 9.85(1) -4.123(1) 0.368(1)

R7 26 20 12.93(4) -4.82(1) 0.36(1)
P8 26 16 13.44(2) -5.14(1) 0.362(1)

20 13.44(2) -5.145(6) 0.360(2)
R8 6 16 3.29(1) -3.50(2) 0.666(2)

26 16 19.86(8) -3.75(2) 0.660(8)
20 19.75(3) -3.75(1) 0.654(4)

T8 26 16 11.87(1) -5.093(2) 0.309(1)
20 11.87(1) -5.092(1) 0.307(1)

R27 26 24 49.9(1) -3.47(1) 0.657(4)

a Numbers in parentheses are statistical uncertainties in units of the last
significant figure shown.
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disordered liquid the particles occupy regular lattice positions.
Smaller cubes and fully flexible chains exhibit no ordering
transitions. The presence of a transition in R27 not seen in R8 is
caused by the increasing discretization of the rigid cube, in
qualitative agreement with the behavior of coarse hard spheres
on a cubic lattice.25 In light of the results of ref 25, the ordering
transitions are precursors of first order transitions that are likely
to appear when the size of the rigid cubes increases beyond
three lattice sites in length.

Figure 4 shows the athermal equation of state for the other
objects (R7, R19, R33, and C22); these systems undergo a strong
first-order transition. These transitions are distinguishable from
ordering (continuous) or higher order transitions in two ways.
Although phase transitions are always rounded due to finite size
effects in simulations, the pressure vs density curve will flatten
around a first-order transition point as system size increases.
Furthermore, hysteresis and multiple histogram peaks can be
observed in runs near a phase transition, an effect which does
not occur at an ordering transition.

For the systems with first-order transitions, the high-density
phases are either crystalline solids (with full positional order)
or smectic liquid crystals. In particular, Figure 5 shows the
structure of the R7 solid, which is a base-centered monoclinic
Bravais lattice. Figure 6 shows the structure of the R19 solid, in
which the unit cell aligns with the lattice so that layers stack
into an arrangement that is precisely body-centered tetragonal.
R33 forms planes with the center bead of each rigid object
arranged in a square lattice of unit lengthx13 and a spacing
of three sites between planes. The centers of the C22 objects
also form square lattice planes with lengthx5 and a spacing
of 5. The axial directions along each spherocylinder in the
crystalline structure are aligned and perpendicular to these
planes. In both cases, there are four equivalent configurations
in which one plane of the dense phase can stack upon another,
resulting in loss of registry between successive planes. Table 3
summarizes the minimal simulation box dimensions needed to
ensure a defect-free solid or liquid crystalline structure with
periodic boundary conditions for the systems studied. The actual
simulations listed in Table 4 were performed in boxes with sides
that were integer multiples of the minimal box dimensions.

Comparing the R7, R19, and R33 structures with the results of
Hoover and Ree26 demonstrates significant deviations between
the continuum model for hard spheres and the lattice models
presented here. This result is not entirely unexpected since the

Figure 3. Pressure vs density diagram for noninteracting hard objects: P4

(circles,L ) 10), P8 (crosses,L ) 16), T4 (triangles,L ) 10), R8 (diamonds,
L ) 16), R27 (squares,L ) 24), monomers (solid line).Vo is the number of
lattice sites occupied by each object. The values ofâPVo for T4, R8, and
monomers are reduced by a factor of 2 for visual clarity.

Figure 4. Pressure vs density in the athermal limit for R7 (circles, system
size 7× 14 × 14), R19 (diamonds, 10× 10 × 16), R33 (squares, 13× 13
× 18), and C22 (triangles, 15× 15 × 15). Solid line is the data of Hoover
and Ree for a continuum hard sphere fluid.25

Figure 5. Solid structure for R7.

Figure 6. Solid structure for R19.

Table 3. Maximum Density of the Crystalline Phases and Minimal
Simulation Box Dimensions Needed To Achieve that Density

model φmax K L M

R7 1 7 7 7
R19 0.95 10 10 4
R33 0.846 13 13 3
C22 0.88 5 5 5

Table 4. Fluid-Crystalline Transitions for Athermal Models a

model K× L × M âµ âPVo φF φC

R7 14× 14× 7 2.74(2) 2.81(1) 0.711(2) 0.868(2)
R19 10× 10× 16 2.93(1) 2.89(2) 0.579(1) 0.910(1)

10× 10× 20 2.92(2) 2.88(1) 0.579(1) 0.908(1)
C22 15× 15× 15 5.32(3) 4.05(2) 0.614(2) 0.794(2)

15× 15× 20 5.30(2) 4.02(1) 0.613(1) 0.792(1)
R33 13× 13× 18 3.96(3) 3.50(3) 0.580(1) 0.832(1)

13× 13× 24 4.02(3) 3.55(4) 0.581(1) 0.832(1)

a Numbers in parentheses are statistical uncertainties in units of the last
significant figure shown.φF andφC are the volume fractions of the fluid
and crystalline phases, respectively, at the phase transition.
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maximum packing fraction and crystal structure of these rigid
objects are quite different than the face-centered cubic lattice
formed by perfect spheres. The phase transitions for these lattice
objects occur at a lower pressure than the continuum hard
spheres, indicating that the underlying lattice imposes order that
is not present in continuous space. However, as the objects
increase in size, the pressure of the transition increases toward
the continuum limit. The athermal C22 structure also exhibits a
phase transition from a disordered state to a smectic state. The
transition to a nematic state seen in continuum hard spherocyl-
inders is not present,11 and the body-centered solid cannot form
due to the constraints of the lattice. The locations of the athermal
transitions and the densities of the coexisting fluid and crystalline
phases are listed in Table 4.

Finally, phase transitions for these objects were determined;
the results are shown in Figure 7. Since these transitions do
not have a critical point, simulations were carried out at high
temperature (T ) 100) to ensure that both sides of the phase
envelope could be sampled during a single simulation. The
absence of a stable vapor-liquid phase envelope for these
objects can be understood in terms of the range of attraction
for hard particles, which effectively decreases as the size of
the lattice objects increase. As seen previously for polymer/
colloid mixtures27,28 and hard-core Yukawa systems,29 the
vapor-liquid transition eventually disappears below the fluid-
solid envelope on reducing the range of attraction. The large
lattice objects in the Rx group are found to exhibit only fluid-
solid equilibrium behavior. The rigid cubes (R8, R27) are
exceptions, but this observation is most likely an artifact of
arranging these cubic objects on a cubic lattice. The presence
of the metastable vapor-liquid transition near the edge of the
fluid-solid-phase envelope of R7 is an indication that the ratio
of the interaction distance to particle diameter for that system
is near the critical value at which a stable liquid phase will form.

4. Conclusions

We have quantified vapor-liquid and fluid-solid equilibria
for several systems of rigid lattice objects. Hard planar structures
four and eight lattice sites in size demonstrate ordering transi-
tions. Hard cubes comprised of 27 lattice sites show a continuous
ordering transition that is not observed for the eight monomer
cube. Objects similar in structure to hard spheres have first-

order phase transitions at pressures that are lower than those
seen in the continuum system, although increasing the discreti-
zation of these particles shifts the transition closer to the
continuum limit. A metastable liquid phase is present in the R7

system, indicating that the range of attraction between particles
is near the point where a stable liquid phase can form.

In the future, we plan to use these lattice simulations to study
amphiphilic particles. Combining athermal rigid objects with
flexible tail groups having nearest neighbor attractions will
provide a reasonable representation of both the structure and
interactions present in real surfactant or lipid particles. Using
techniques presented here and elsewhere,30 it should be possible
to study phase separation and micellization of these lattice
systems.
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