Quantitative interactions between cryptdin-4 amino terminal variants and membranes

Donald P. Satchell a,1, Tanya Sheynis b, Sofiya Kolusheva b, Jason Cummings c, T. Kyle Vanderlick c, Raz Jelinek b, Michael E. Selsted a, d, Andre J. Ouellette a, d, ∗

a Department of Pathology, College of Medicine, University of California, Irvine, CA 92697-4800, USA
b Department of Chemistry, Ben-Gurion, University of the Negev, Beer Sheva, Israel
c Department of Chemical Engineering, Princeton University, Princeton, NJ 08544, USA
d Department of Microbiology and Molecular Genetics, College of Medicine, University of California, Irvine, CA 92697-4800, USA

Received 3 April 2003; accepted 1 August 2003

Abstract

Paneth cells secrete n-defensins into the lumen from the base of small intestinal crypts, and cryptdin-4 (Crp4) is the most potent mouse n-defensin in vitro. Purified recombinant Crp4 and Crp4 variants with (des-Gly), (Gly1Val), (Gly1Asp), and (Gly1Arg)-substitutions were all bactericidal with Crp4 and (Gly1Arg)-Crp4 being slightly more active than other variants. Bactericidal activities correlated directly with permeabilization of live Escherichia coli, with equilibrium binding to E. coli membrane phospholipid bilayers and vesicles, and with induced graded fluorophore leakage from phospholipid vesicles. The Crp4 peptide N-terminus affects bactericidal activity modestly, apparently by influencing peptide binding to phospholipid bilayers and subsequent permeabilization of target cell membranes.© 2003 Elsevier Inc. All rights reserved.

Keywords: Innate immunity; Paneth cells; Polymerase chain reaction; Recombinant peptide expression; n-Defensin; Reverse-phase high performance liquid chromatography; Matrix-assisted laser desorption time-of-flight mass spectrometry; Surface plasmon resonance; Lipid polydiacetylene vesicles; ANTS-DPX leakage; Antimicrobial peptide

1. Introduction

Paneth cells reside at the base of the crypts of Lieberkühn in the small intestine, where they secrete large, apically oriented granules that contain high levels of antimicrobial peptides and proteins, including lysozyme [7,26,37], secretory phospholipase A2 [20], and n-defensins [4,21,25,27]. Paneth cells discharge these granules in response to cholinergic stimulation or when exposed to bacteria or bacterial antigens [2,29,30]. n-Defensins, termed cryptdins, account for ~70% of the bactericidal peptide activity in Paneth cell secretions [2].

Cryptdins are components of mouse innate enteric immunity in vivo as shown by studies of mice lacking a key processing enzyme in the biosynthetic pathway [40]. Matrix metalloproteinase-7 (MMP-7, matrilysin, EC 3.4.24.23) is the enzyme responsible for processing and activation of mouse Paneth cell procryptdins [1,40]. Paneth cells of MMP-7-null mice contain high levels of cryptdin precursors but produce no detectable functional cryptdin peptides [1,40]. This deficiency correlates with defective clearing of orally administered bacteria, and MMP-7 knockouts are ~10-fold more susceptible to systemic disease when infected orally with virulent Salmonella enterica serovar typhimurium (S. typhimurium) [40]. Thus, studies that elucidate mechanisms of peptide action contribute to the understanding of innate immunity in molecular terms.

Studies of certain human and mouse n-defensins implicate the peptide N-terminus as a determinant of bactericidal activity [6]. For example, the human neutrophil n-defensins HNP-1, -2 and -3 are identical except at their N-termini, where HNP-1 terminates as ACYCR... [6]. In the context of the HNP-1/3 polypeptide backbone, HNP-1 and HNP-3 are variants of HNP-2 with Ala and Asp at their respective N-termini, and those modifications strongly influence peptide activities. For example, HNP-1 and HNP-2 possess nearly equivalent broad-spectrum microbicidal activities, but the activity of HNP-3 is severely attenuated against...
certain microorganisms [6]. HNP-3 is 14-fold less bactericidal against Staphylococcus aureus 502a, and it has only ~1% the activity of HNP-1 and 2 against Cryptococcus neoformans. In mice, enteric x-defensins recovered from the small intestinal lumen included N-terminally truncated cryptidins that had reduced antimicrobial activities in in vitro assays [24]. One peptide in particular, (des-Gly)-Crp4, was lacking the Gly residue from the Crp4 peptide N-terminus and exhibited less bactericidal activity against certain Gram-negative bacteria, suggesting that the Crp4 N-terminus was a determinant of microbicidal activity.

In this report, amino acid substitutions were introduced to alter the charge and hydrophobicity of the Crp4 N-terminus, and the variant peptides were tested for differences in microbial activity. Compared to naturally existing HNP-1/3, altered microbicidal activity only modestly. Nevertheless, the small differences in bacterial activity of the N-terminal Crp4 variants correlated with quantitative effects on peptide–membrane interactions and with the kinetics and extent of peptide-induced cellular and vesicular permeabilization events.

2. Method

2.1. Preparation of recombinant Crp4 peptides

Recombinant Crp4 peptides were expressed in Escherichia coli as N-terminal 6x-histidine tagged fusion proteins. DNA coding for the Crp4 peptide, corresponding to nucleotides 182–274 of mouse Crp4 cDNA [22], was amplified and directionally subcloned into the EcoRI and SalI sites of the pET28a expression vector (Novagen, Inc., Madison, WI, USA). The Crp4 coding cDNA sequences were amplified using forward primer [ER1-Met-C4-F] 5'-GGCGG AATTC ATCGA GGGAAG GAGTG GTT GTGG ATGGCT ATGTG, paired with reverse primer, [pMALCrp4-R].

To introduce substitutions at the N-terminus, the common reverse primer [pMALCrp4-R] 5'-ATATA TGGTCG ACTCA AGCGAC AGCGAC AGCGAC GC TGA ATAAAA TG [24] was paired with the following forward primers:

- (des-Gly)-Crp4, [ER1-Met-Gly1Val-C4-F] 5’-GGCGG AATTC ATCGA GGGAAG GAGTG GTT GTGG ATGGCT ATGTG; (Gly1Val)-Crp4, [ER1-Met-Gly1Val-C4-F] 5’-GGCGG AATTC ATCGA GGGAAG GAGTG GTT GTGG ATGGCT ATGTG; (Gly1Asp)-Crp4, [ER1-Met-Gly1Asp-C4-F] 5’-GGCGG AATTC ATCGA GGGAAG GAGTG GTT GTGG ATGGCT ATGTG; and (Gly1Arg)-Crp4, [ER1-Met-Gly1Arg-C4-F] 5’-GGCGG AATTC ATCGA GGGAAG GAGTG GTT GTGG ATGGCT ATGTG.

In each primer, the underlined codon in each Crp4 forward primer denoted the Met codon introduced immediately upstream of the designed peptide amino terminus to introduce a CNBr cleavage site. Following PCR amplification, samples of individual reactions were gel purified using in 2% agarose gels, and extracted using QIAEX II (Qiagen Inc., Valencia, CA, USA). Purified fragments were digested with EcoRI and SalI, ligated into similarly digested pET28a plasmid DNA (Novagen, Inc.), and transformed into XL-1 Blue cells (Stratagene Cloning Systems, Inc., La Jolla, CA, USA). Positive recombinant clones were identified by EcoRI and SalI digestion of plasmids from colonies and confirmed to have appropriate coding modifications by DNA sequencing.

Recombinant proteins were expressed in E. coli BL21(DE3)-CodonPlus-RIL cells (Stratagene) transformed with Crp4 cDNA constructs. Cells were grown at 37 °C to OD600 = 0.9 in Terrific Broth (TB) medium consisting of 12 g BactoTryptone (Becton Dickenson Microbiological Systems, Inc., Sparks, MD, USA), 24 g of Bacto Yeast Extract (Becton Dickenson), 4 ml glycerol, 900 ml H2O, 100 ml of the following sterile phosphate buffer 0.17 M KH2PO4 and 0.72 M K2HPO4, and 70 µg/ml kanamycin. Fusion protein expression was induced by addition of 0.1 mM isopropyl-β-D-thiogalactopyranoside (IPTG), and bacterial cells were harvested by centrifugation after growth for 6 h at 37 °C and stored at −20 °C. Cells were lysed by resuspending the bacterial cell pellets in 6 M guanidine-HCl in 100 mM Tris–HCl (pH 8.1) followed by sonication at 70% power, 50% duty cycle for 2 min using a Branson Sonifier 450. lysates were clarified by centrifugation in a Sorvall SA-400 rotor at 30,000 × g for 30 min at 4 °C prior to protein purification.

2.2. Purification of recombinant Crp4 proteins

His-tagged Crp4 fusion peptides were purified using nickel-nitritotriacetic acid (Ni-NTA, Qiagen) resin affinity chromatography [36]. Cell lysates were incubated with Ni-NTA resin at a ratio of 25:1 (v/v) in 6 M guanidine-HCl, 20 mM Tris–HCl (pH 8.1) for 4 h at 4 °C. Fusion proteins were eluted with 2 column volume of 6 M guanidine–HCl, 1 M imidazole, 20 mM Tris–HCl (pH 6.4), dialyzed in SpectroPor 3 (Spectrum Laboratories, Inc., Rancho Dominguez, CA, USA) membranes against 5% acetic acid and lyophilized. The Met residue to the N-terminus of each Crp4 peptide provided a cyanogen bromide (CNBr) cleavage site in the His-tagged fusion peptide. CNBr cleavage was performed on lyophilized His-Crp4 peptide dissolved in 50% formic acid to which solid CNBr was added to a final concentration of 10 mg/ml, and the mixtures were incubated for 8 h in foil wrapped polypropylene tubes at 25 °C. The cleavage reactions were terminated by addition of 10 volumes of H2O, followed by freezing and lyophilization of the peptide mixture. Cleaved peptide samples were then dissolved in 5% acetic acid and stored at 4 °C.

The Crp4 peptides were purified to homogeneity using reverse-phase high performance liquid chromatography (RP-HPLC). After CNBr cleavage, Crp4 peptides were separated from the 36 amino acid 6X-His-tag fusion partner by C-4 RP-HPLC on a Vydac 214TP1010 column (Grace Vydac, Hesperia, CA, USA). Protein samples were applied
to C-4 columns in aqueous 0.1% trifluoroacetic acid (TFA) and resolved using a 55 min gradient of 0 to 35% acetonitrile. Crp4 peptides were purified to homogeneity by analytical C-18 RP-HPLC on a Vydac 218TP54 column. Using the same mobile phase, each Crp4 variant was resolved with elution times ranging from 21 to 24 min using a 55 min, 10-45% acetonitrile gradient. Protein fractions containing Crp4 were identified by acid-urea polyacrylamide gel electrophoresis (AU-PAGE) as described [23,33,35] to confirm conjugation with natural Crp4 and to evaluate the homogeneity of the preparation. Peptide concentrations were quantified by amino acid analysis (Waters Alliance, Bedford, MA, USA) or UV absorption spectrophotometry (Voyager-DE MALDI-TOF, PE-Biosystems, Foster City, CA, USA). The maximum velocity of ONPG hydrolysis (Vf) reflects the concentration-dependent, maximum rate of ONPG diffusion into the bacterial cytoplasm following membrane perturbation. Vf was calculated by non-linear regression of the time course of ONP absorbance at 400 nm [19] using the first order kinetic equation of Hill
\[
Y = \frac{AX^Y}{C^X + X^Y}
\]
with coefficients derived from the kinetic data for ONPG hydrolysis fit with Eq. (1) using SigmaPlot (SPSS Science, Chicago, IL, USA). The variables are defined as follows: (Y) measured absorbance of ONP at 400 nm, (X) time interval corresponding to (Y) in minutes and decimal seconds, (A) the maximum ONP absorbance value, (B) concentration-dependent cooperativity for ONPG hydrolysis determined using Eq. (1), and (C) the corresponding time point to attain 50% of the absorbance maximum (A).

2.5. Binding of Crp4 peptides to phospholipid bilayers

Surface plasmon resonance (SPR) was used to determine the equilibrium binding constant (Kd) of Crp4 and each peptide variant to E. coli phospholipids on a Biacore 3000 instrument (Biacore International AB, Uppsala, Sweden). Large unilamellar vesicles (LUV) were prepared from whole cell phospholipids extracted from E. coli (Sigma-Aldrich, St. Louis, MO, USA). The lipid mixture was dissolved in methylene chloride with gentle mixing until clear and homogeneous and then dried under a stream of N2 gas. The dried lipid cake was suspended in 1 ml of lipids, Inc., Alabaster, AL, USA). The Biacore L1 sensor chip surface was conditioned by injection of 100 μl of 10 mM ONPG in 10 mM PIPES (pH 7.4, 1% (v/v) TSB or SDB. Peptide samples were lyophilized and dissolved in 10 mM PIPES (pH 7.4) at 1 mg/ml. Approximately 1 × 10^6 microorganisms were incubated with test peptides in a total volume of 50 μl for 1 h (bacteria) or 2 h (fungi) in a shaking incubator at 37°C. Following incubation, 20 μl samples of incubation mixtures were diluted 1:2000 with 10 mM PIPES (pH 7.4) and 50 μl of the diluted samples were plated on TSB or SDB agar plates using an Autoplate 4000 (Spiral Biotech Inc., Bethesda, MD, USA). Surviving microorganisms were quantitated by amino acid analysis (Waters Alliance, Milwaukee, WI, USA), and used to make LUV by repeated extrusion of the lipid suspension through an extruder fitted with polycarbonate membranes with 0.1 μm pores (Avanti Polar Lipids, Inc., Alabaster, AL, USA). The Biacore L1 sensor chip surface was conditioned by injection of 100 μl of 10 mM ONPG in 10 mM PIPES (pH 7.4, 1% (v/v) TSB) and 10 mM ONPG was combined with 2 μl of peptides, as noted the legend to Fig. 6, and 40 μl of log-phase E. coli ML35 cells (OD_600 = 0.1) in 10 mM PIPES (pH 7.4), 1% TSB. The kinetics of ONP production at 37°C was measured by absorbance at 400 nm for 120 min using a 96-well Spectra Max plate spectrophotometer (Molecular Devices Corp., Sunnyvale, CA, USA). The maximum velocity of ONPG hydrolysis (Vf) reflects the concentration-dependent, maximum rate of ONPG diffusion into the bacterial cytoplasm following membrane perturbation. Vf was calculated by non-linear regression of the time course of ONP absorbance at 400 nm [19] using the first order kinetic equation of Hill
\[
Y = \frac{AX^Y}{C^X + X^Y}
\]
with coefficients derived from the kinetic data for ONPG hydrolysis fit with Eq. (1) using SigmaPlot (SPSS Science, Chicago, IL, USA). The variables are defined as follows: (Y) measured absorbance of ONP at 400 nm, (X) time interval corresponding to (Y) in minutes and decimal seconds, (A) the maximum ONP absorbance value, (B) concentration-dependent cooperativity for ONPG hydrolysis determined using Eq. (1), and (C) the corresponding time point to attain 50% of the absorbance maximum (A).
was stable as judged by the consistency of SPR signals after repeated injection of 0.10 M NaOH [5,11]. Injections of 0.5 μM bovine serum albumin (Sigma), showed <70 relative response units of binding to the sensor surface in the presence of the lipid bilayer, evidence of phospholipid coverage of the sensor surface.

Equilibrium binding of Crp4 peptides to the phospholipid surface was performed by injection of 0–10 μM Crp4 peptide solutions in 10 mM PIPES (pH 7.4) at a flow rate of 30 μl/min at 37 °C. SPR signals were monitored for 15 min after injection to record both the association and dissociation kinetics of the peptide-phospholipid bilayer interaction. At all concentrations assayed, peptide binding reached equilibrium within 120 s, and peptide dissociation was monitored for 10 min following the injection. After each injection period, bilayers were washed with 30 μl 0.5 M KCl at a flow rate of 10 μl/min, and desorption of Crp4 was judged by the return of SPR signals to pre-peptide injection values. Equilibrium binding constants (K_d) for peptide affinity to the phospholipid bilayer were determined by non-linear regression using the Marquardt-Levenberg algorithm of the protein binding isotherm in the program SigmaPlot.

2.6. Peptide interactions with lipid/polyacetylene (PDA) mixed vesicles

Colorimetric lipid/PDA vesicles were prepared using dimyristoylphosphatidylcholine (DMPC) and dimyristoylphosphatidylglycerol (DMPG) purchased from Sigma–Aldrich Co. Total lipids were extracted from E. coli B/r H-266, grown at 37 °C for 24 h in LB medium. Bacteria deposited by centrifugation were resuspended in 4 M NaCl and an equal volume of a 1:1 mixture of chloroform and methanol. After the mixture was shaken gently for 1 h and refrigerated overnight, the chloroform and aqueous phases were separated by centrifugation at 5000 × g for 15 min, and the aqueous methanol solution was re-extracted with chloroform. The combined chloroform extracts were concentrated by evaporation, and the residual lipid-containing chloroform, and filtered through a 0.45 μm filter prior to use.

Polycarbonate filters of 100 nm pore size. Vesicles were separated from unencapsulated ANTS/DPX by passing the solution through a Sephadex G-50 medium resin column, using as the eluant a solution consisting of 130 mM NaCl, 10 mM HEPES, 31 mM NaCl, and 19.5 mM NaOH (solution osmolarity 260 mOsm, pH 7.4) were vortexed, frozen, and thawed for five cycles and then extruded through polycarbonate filters of 100 nm pore size. Vesicles were separated from unencapsulated ANTS/DPX by passing the solution through a Sephadex G-50 medium resin column, using as the eluant a solution consisting of 130 mM NaCl, 10 mM HEPES, and 4.5 mM NaOH (260 mOsm, pH 7.4). Visceral suspensions were diluted with this same solution to a final value of approximately 74 μM total lipid and were then incubated with peptide at ambient temperature. Time-dependent fluorescence, produced by ANTS release, was monitored at 520 nm (excitation at 353 nm[28]). Kinetics of the leakage response was a function of peptide concentration. However, equilibrium was attained well before 4 h. Thus, the 4 h value was plotted as a function of peptide concentration, normalized to the fluorescence obtained when vesicles were solubilized with Triton X-100.

3. Results

3.1. Production of recombinant Crp4 peptides

Efficient recombinant expression of Crp4 and Crp4 variants was obtained in E. coli using pET-28a (Section 2), providing improved yields compared to those reported pre-
Fig. 1. Biochemical composition of the recombinant Crp4 peptides. Crp4 and N-terminal variants are shown in alignment. Theoretical and experimentally determined peptide molecular weights are reported for each Crp4 amino acid sequence. The conserved H9251-defensin intramolecular disulfide bond arrangement is identified by the connecting bars above the peptide sequences. Net charge was calculated based on the pKₐ of ionizable side chains at pH 7.4 present in the peptide sequences.

Fig. 2. Purified recombinant Crp4 peptides. Expressed Crp4 peptides were purified using NTA affinity chromatography, C-4 and C-18 reverse-phase HPLC. The retention times of individual Crp4 variants were very similar. Purified peptides were evaluated for homogeneity using non-reducing AU-PAGE and mass spectrometry. The high sensitivity of AU-PAGE to slight differences in net positive charge relative to size enables the resolution of Crp4 variant peptides. Coomassie blue stained AU-PAGE; 4 g of each purified peptide was loaded into each lane. Lanes: 1, native Crp4; 2, Crp4; 3, (des-Gly)-Crp4; 4, (Gly1Asp)-Crp4; 5, (Gly1Val)-Crp4; 6, (Gly1Arg)-Crp4.

3.2. Bactericidal activities of the Crp4 variants

Crp4 and Crp4 N-terminal variants were nearly indistinguishable in their ability to kill Gram-negative and Gram-positive bacteria. Because the microbicidal activities of human neutrophil α-defensins improve when nutrients are added to assay mixtures [6,34], Crp4 peptides also were assayed with nutrient supplementation. Under these new conditions, the sensitivity and reproducibility of Crp4 microbicidal activity was markedly enhanced relative to our previous antimicrobial assays of Crp4 and (des-Gly)-Crp4 in 10 mM PIPES (pH 7.4) [22,23]. As noted in Section 4, the robust concentration-dependent activity of Crp4 and all peptide variants (Figs. 3 and 5) eliminated the previously observed attenuation of (des-Gly)-Crp4 activity. Against E. coli, S. typhimurium PhoP, and V. cholerae, Crp4 and (Gly1Arg)-Crp4 consistently showed slightly greater activity than the remaining peptides assayed, killing 99.9% of exposed bacteria between 2.5 and 10 μg/ml (Fig. 3A–C). On the other hand, (Gly1Asp)-Crp4 had somewhat lower activity against Gram-negative species, requiring two to four times more peptide to kill at the level of Crp4 (Fig. 3). Thus, compared to the effects of the N-terminal Asp on HNP-3 activity [6], the Gly1Asp substitution caused negligible attenuation of bactericidal activity. (Gly1Val)-Crp4 also displayed diminished activity against certain target cells, suggesting that the decreased activity is not attributable solely to N-terminal charge. Although subtle differences in the concentration dependence of bacterial cell killing were observed, S. aureus and L. monocytogenes were killed by all Crp4 peptides at concentrations of 10–20 μg/ml (Fig. 4A and B), consistent with the previously observed preferential killing of Gram-negative bacteria. However, unlike the profound attenuating effects of electronegative substitution at HNP N-termini [17], the Crp4 variants that differed most in microbicidal activity varied only by a factor of two to three-fold (Fig. 3).

3.3. Microbicidal activity of the Crp4 variants against fungi

The opportunistic fungi C. neoformans and Candida albicans were less sensitive than bacteria to the microbicidal effects of Crp4 and N-terminal Crp4 variants (Fig. 5). C. neoformans was more susceptible than C. albicans, which was insensitive to (Gly1Val), (Gly1Asp), and (des-Gly)-Crp4 exposure and only slightly affected by Crp4 or (Gly1Arg)-Crp4 (Fig. 5B). Consistent with their bactericidal activities (Figs. 3 and 4), Crp4 and (Gly1Asp)-Crp4 were slightly more active against both fungi than the other Crp4 variants (Fig. 5A).
1800

D.P. Satchell et al. / Peptides 24 (2003) 1795–1805

Fig. 3. Bactericidal activity of recombinant Crp4 peptides against Gram-negative bacteria. Exponentially growing E. coli ML35 (A), S. typhimurium (PhoP) (B), or V. cholera (C) were exposed to increasing concentrations of Crp4 peptide in 10 mM PIPES pH 7.4 buffer, 1% TSB for 1 h at 37 °C (Section 2). Following exposure, bacteria were plated onto TSA plates and incubated for 16 h at 37 °C. Surviving bacteria were quantified and the results are reported as the number of colony forming units per milliliter (CFU/ml) for each peptide concentration. Bacterial counts below 1 × 10^3 CFU/ml indicate no surviving colonies on the incubated plate. Symbols: (○) Crp4, (□) (des-Gly)-Crp4, (△) (Gly1Asp)-Crp4, (▽) (Gly1Val)-Crp4, (●) (Gly1Arg)-Crp4.

3.4. Permeabilization of E. coli by Crp4 peptides

To determine whether modifications of N-terminal net charge and hydrophobicity modulated the ability of Crp4 to permeabilize the inner bacterial cell membrane, cell permeabilization experiments were performed against E. coli ML35 (Fig. 6; Section 2). Permeabilization of E. coli by the Crp4 peptides was concentration-dependent and corresponded with the relative bactericidal activities of the peptides. At concentrations ≥ 2.3 μM (8.5–8.9 μg/ml), all Crp4 N-terminal variants killed 99.9% of exposed E. coli ML35 cells (Fig. 3A), and each peptide permeabilized E. coli equivalently at concentrations of 2.3 μM or greater (Fig. 6A–C; Table 1). On the other hand, at ≤ 2.3 μM peptide, the rate and

Fig. 4. Bactericidal activity of Crp4 peptides against Gram-positive bacteria. Exponentially growing S. aureus 713a or L. monocytogenes 10403S were exposed to increasing concentrations of the Crp4 peptides. All assay parameters were performed as described in Fig. 3. Symbols: ○ Crp4, □ (des-Gly)-Crp4, △ (Gly1Asp)-Crp4, ▽ (Gly1Val)-Crp4, ● (Gly1Arg)-Crp4.

Fig. 5. Fungicidal activity of Crp4 peptides. Yeast-like fungi, C. neoformans (A) 271a and C. albicans (B) were grown to mid-log phase and exposed to increasing concentrations of Crp4 peptides in 10 mM PIPES pH 7.4. 1% SAB for 2 h at 37 °C. Following peptide exposure, fungi were plated onto SAB plates and incubated for 36 h at 37 °C (Section 2). Surviving fungi were quantified as described in Fig. 3. Symbols: ○ Crp4, □ (des-Gly)-Crp4, △ (Gly1Asp)-Crp4, ● (Gly1Val)-Crp4, ▽ (Gly1Arg)-Crp4.
Fig. 6. Permeabilization of the E. coli cytoplasmic membrane by Crp4 N-terminal variants. The kinetics for membrane permeabilization by Crp4 peptides was determined by monitoring the rate of o-nitrophenyl-/H9251-/d-galactopyranoside (ONPG) hydrolysis by cytoplasmic /H9252-/galactosidase in E. coli ML35. ONPG hydrolysis was measured following addition of Crp4 peptide (A400 nm at 5 s intervals for 120 min, 37 °C). The maximum velocity of enzyme catalyzed ONPG hydrolysis (V_P) was determined by non-linear regression for each time course (Section 2). The time required to reach V_P were compared by determining the time at which the maximum rate of hydrolysis was reached (Section 2), indicated by the vertical line intersecting each kinetic curve (defined as T_P). Values for V_P and T_P are listed in Table 1. Peptide concentrations were as follows: (A) 1.0 M; (B) 1.5 M; (C), 2.3 M. Symbols: (Crp4, (des-Gly)-Crp4, (Gly1Asp)-Crp4, (Gly1Val)-Crp4, (Gly1Arg)-Crp4. For each panel, V_P and T_P values represent the mean from triplicate determinations for each peptide.

Table 1

<table>
<thead>
<tr>
<th>Peptide concentration (µM)</th>
<th>Crp4</th>
<th>(des-Gly)-Crp4</th>
<th>(Gly1Val)-Crp4</th>
<th>(Gly1Asp)-Crp4</th>
<th>(Gly1Arg)-Crp4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>79.8</td>
<td>44.7</td>
<td>82.3</td>
<td>45.7</td>
<td>62.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>53.6</td>
<td>56.5</td>
<td>57.5</td>
</tr>
<tr>
<td>1.5</td>
<td>101.2</td>
<td>34.2</td>
<td>101.5</td>
<td>30.4</td>
<td>74.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>48.2</td>
<td>71.0</td>
<td>50.8</td>
</tr>
<tr>
<td>2.3</td>
<td>108.9</td>
<td>30.9</td>
<td>106.5</td>
<td>29.5</td>
<td>95.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>33.8</td>
<td>89.1</td>
<td>30.7</td>
</tr>
<tr>
<td>3.5</td>
<td>107.3</td>
<td>26.5</td>
<td>105.5</td>
<td>25.5</td>
<td>103.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>26.2</td>
<td>103.2</td>
<td>23.7</td>
</tr>
</tbody>
</table>

The maximum velocity of enzyme catalyzed ONPG hydrolysis (V_p) in pmol/min following permeabilization of the E. coli cytoplasmic membrane and the time to achieve V_p (T_p in minutes) are listed for each peptide. V_p and T_p were determined as described in Fig. 4.
Fig. 7. Equilibrium binding isotherm of Crp4 binding to an E. coli phospholipid bilayer. Large unilamellar vesicles composed of E. coli phospholipids were used to establish a phospholipid bilayer on a Biacore L1 sensor chip (Section 2). Equilibrium binding of Crp4 to the phospholipid bilayer was determined by independent injections of Crp4 in 10 mM PIPES (pH 7.4) at 37°C over a 120 s injection period. Dissociation constants were determined by non-linear regression of the binding isotherm for each Crp4 peptide and are listed in Table 2.

3.6. Crp4 interactions with lipid/PDA mixed vesicles

Interactions between Crp4, (des-Gly)-Crp4, and (Gly1Arg)-Crp4 were studied by colorimetric assays performed using lipid/PDA mixed vesicles (Section 2). The peptide-induced blue-red chromatic transitions (percent CR) were dependent on peptide concentration and the phospholipid composition of the lipid/PDA mixed vesicles (Fig. 8), and the chromatic shifts varied with the composition of the peptide N-termini. The peptides we examined, Crp4, (des-Gly)-Crp4, and (Gly1Arg)-Crp4, were added to DMPC/PDA vesicles (Fig. 8A) and lipid/PDA mixed vesicles composed of E. coli whole membrane phospholipids (Fig. 8B). The percent CR curves induced by (des-Gly)-Crp4 were steeper than those of the other peptides, showing that (des-Gly)-Crp4 bound more strongly to lipid bilayer head groups than Crp4 or (Gly1Arg)-Crp4 and that it inserted less deeply into the membrane [12,14,28]. At 0.5 μM (des-Gly)-Crp4, percent CR values were 50 and 25% in DMPC/PDA and E. coli lipid/PDA vesicles, respectively (Fig. 8A and B). In contrast, 0.5 μM Crp4 and (Gly1Arg)-Crp4 induced percent CR values of only 10–30%, evidence of enhanced insertion of these two peptides into the hydrophobic core of the lipid bilayer [14]. The modestly lower bactericidal activity of (des-Gly)-Crp4 may result from its interactions at the lipid/water interface and less perturbation of the hydrophobic core of the membrane. Consistent with this notion, the lower slopes of the percent CR curves induced by the more active Crp4 and (Gly1Arg)-Crp4 peptides suggest that they insert more deeply into the bilayer than (des-Gly)-Crp4 and that the N-terminal Gly residue of natural Crp4 influences lipid bilayer penetration.

Table 2

<table>
<thead>
<tr>
<th>Peptide</th>
<th>Kd (μM)</th>
<th>S.D.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crp4</td>
<td>0.69</td>
<td>0.04</td>
</tr>
<tr>
<td>(des-Gly)-Crp4</td>
<td>0.82</td>
<td>0.05</td>
</tr>
<tr>
<td>(Gly1Val)-Crp4</td>
<td>0.77</td>
<td>0.09</td>
</tr>
<tr>
<td>(Gly1Asp)-Crp4</td>
<td>1.26</td>
<td>0.09</td>
</tr>
<tr>
<td>(Gly1Arg)-Crp4</td>
<td>0.58</td>
<td>0.07</td>
</tr>
</tbody>
</table>

Dissociation constants were determined by surface plasmon resonance as described in Fig. 5 and Section 2. Each determination was performed in triplicate.

Fig. 8. Crp4 N-terminal variant interactions with lipid/PDA vesicles of differing lipid composition. PDA vesicles containing DMPC/PDA (2:3 mole ratio) (A) or total lipid extracts from E. coli (B) were exposed to Crp4 (), (Gly1Arg)-Crp4 (), or (des-Gly)-Crp4 () as described in Section 2. The relative increase in percent CR is proportional to the depth of peptide insertion into the lipid bilayer. In both systems, (des-Gly)-Crp4 exhibits stronger interfacial binding to polar head groups, but Crp4 and (Gly1Arg)-Crp4 insert more deeply.

3.7. LUV leakage studies

Interactions between membranes and peptides (Crp4, (Gly1Arg)-Crp4, (des-Gly)-Crp4) were also analyzed by examining peptide-induced leakage of low molecular weight fluorophores (ANTS) from LUV (Section 2). Results were consistent with the relative bactericidal activities of the peptides: Crp4 and (Gly1Arg)-Crp4 were more effective than (des-Gly)-Crp4; the differences were small but measurable (Fig. 9). All Crp4 peptides were more effective at inducing leakage from vesicles composed exclusively of the anionic lipid POPG (Fig. 9A) compared to LUV consisting of 80% POPG and 20% POPC (Fig. 9B), suggesting that electrostatic interactions regulate the degree of vesicle leakage.
Fluorescence quenching assays showed that all Crp4 peptides induced graded rather than all-or-none leakage. Thus, the Crp4 N-terminal variants induced leakage from LUV by a similar mechanism, and the slightly differing extents of leakage induced by the individual peptides were consistent with their modestly different bactericidal activities.

4. Discussion

In a previous report, certain cryptdin peptides purified from rinses of the mouse small intestinal lumen were found to have truncated N-termini and attenuated in vitro antimicrobial activities [24]. In bactericidal assays conducted by exposing the test bacteria to peptides in dilute (1%, v/v) microbiological media, the sensitivity and reproducibility of the assays improved, but (des-Gly)-Crp4 no longer had reduced activity relative to Crp4 (Figs. 3–5). It is not clear as to why the activity of (des-Gly)-Crp4 improved so drastically under the new assay conditions, but it is now clear that (des-Gly)-Crp4 and Crp4 have similar inherent bactericidal activities under the current assay conditions. Perhaps, as has been noted for certain neutrophil α-defensins, bacteria are more sensitive to membrane disruptive peptides when they are metabolically active [18]. Studies are being carried out to reconcile the differences in the (des-Gly)-Crp4 activities observed.

Relative to the striking attenuating effect of the N-terminal Asp on HNP-3 bactericidal activity [6], changes at the Crp4 peptide N-terminus produced very modest reduction or enhancement of Crp4 microbicidal activity. These differential effects of the N-terminus in the context of the HNP and Crp4 polypeptide structures suggest that the contribution of the N-terminal residue to the overall charge of the peptide influences activity more than N-terminal modification per se [8,41]. Because the Crp4 net charge (+8.5) is more than twice that of HNP-1 and -2 (+3), the unit charge reduction introduced by an electronegative N-terminal Asp residue in HNP-3 (+2) affects peptide charge, and possibly activity, more drastically than the comparable change in Crp4. It is also possible that N-terminal modifications different from those introduced here, i.e. Lys, Phe, or His, could alter Crp4 activity. On the other hand, studies of the single disulfide bonded peptide bactenecin have shown that increasing N- and C-terminal cationicity improved bactericidal peptide activity more than comparable changes in the loop formed by the disulfide bond [41]. As those authors suggested, addition of basic residues to the loop could affect peptide amphipathicity adversely, which reduced peptide activity despite increasing the overall charge of the peptide.

Although N-terminal changes at the Crp4 N-terminus induced only subtle changes in bactericidal activity, the differences between peptides corresponded directly to quantitative differences in their peptide–membrane interactions. Measurements of bacterial cell permeabilization kinetics (Fig. 6; Table 1), phospholipid dissociation constants measured by SPR (Fig. 7; Table 2), interactions with lipid/PDA mixed vesicles (Fig. 8), and induction of graded leakage from LUV of defined phospholipid composition (Fig. 9) showed that modified bactericidal activities by N-terminal substitution corresponded directly to quantitative differences in peptide–membrane interactions. For example, the (Gly1Arg)-Crp4 peptide has a reduced K_d for phospholipid bilayers, penetrated more deeply into the hydrophobic core of mixed vesicles, and induced LUV leakage more effectively (Fig. 9). Thus, even under conditions in which differences between the bactericidal activities of individual peptides are very modest, or perhaps especially so, quantitative assessment of membrane binding or membrane disruptive behavior of peptide variants correlates very well with biological activity.

Changes to N-terminal charge and hydrophobicity alter the microbicidal activity of natural HNP-1/3 more pro-
foundly than comparable changes in Crp4. Because the Cys1-Cys6 disulfide bond that exists in all α-defensins between the N- and C-termini into proximite, changes at the N-terminus may be mitigated by the side chain composition of the amino acids that extend the peptide chain on the C-terminal side of Cys6. Crp4 and HNPs differ in this respect, because Crp4 has a Pro-Arg-Arg C-terminal extension, but HNP-1/3 terminates at Cys6 and has no C-terminal extension. Preliminary findings show that charge reversal at the Crp4 C-terminus and within the polypeptide chain diminishes or eliminates bactericidal peptide activity and thus have more profound effects than corresponding N-terminal mutations (H. Tanabe et al., unpublished data). Perhaps, the lack of C-terminal amino acid side chains to interact with neighboring N-terminal residues accounts for the increased attenuating effect of N-terminal Asp on the biological activity of HNP-3 relative to Crp4. Introduction of (Asp/Lys) or (Asp/Arg)-substitutions at the HNP-3 N-terminus and the addition of basic residues to the HNP-1 C-terminus should provide the means for testing this hypothesis.

Acknowledgments

Supported by NIH grants DK10184 (D.P.S.), AI22931 (M.E.S.), and DK44632 (A.J.O.) and the United States-Israel Binational Science Foundation (A.J.O., R.J.). R.J. is a member of the Ilse Katz Center for Meso- and Nanoscience and Technology, and J.E.C. acknowledges support from an NSF Fellowship. We thank Tim Cole, Vungie Hoang, and Khoa Nguyen for excellent technical assistance. Surface plasmon resonance studies were performed at the UCI Optical Biology Core Facility.

References

