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Dispersed domains in two-phase systems often exhibit complex and intriguing morphologies. For
many of these systems, it is possible to predict the shape of such a domain through an evaluation of
the free energy. In this paper, we present a numerical technique to calculate domain shapes through
a variational approach. This is a significant extension to previous work which has primarily involved
examining free energies of specific classes of shapes. The solution diagram is presented in the
neighborhood of the first four bifurcations from a circle and the affect of domain size is examined.
We find the only stable domain shapes are circular or bilobed. More importantly, we find that the
transition between these two shapes is discontinuous, contrary to the findings of previous shape
studies. Examining the free energy functional in the neighborhood of stable solutions, we find that,
in general, domain shape calculations are best applied to small nonelongated domains. Finally, we
present graphical differentiation, a numerical technique we developed to enable solution of the

problem.

I. INTRODUCTION

Numerous diverse physical systems exhibit fascinating
patterns due to internal domain formation. The essence of
these patterns may arise from the shape of individual do-
mains, the arrangement of domains, or both. Such systems
include ferromagnetic fluids,'™® thin magnetic films,*
superconducters,” and phospholipid monolayers residing at
the air/water interface.5® While many observed shapes and
patterns emerge from growth kinetics, they often evolve into
stable conformations which are independent of their history
of formation. In recent years, much work has been initiated
to predict domain shapes and shape transitions using free
energy analyses. All of these attempts have been restricted to
one of three approaches: (1) direct comparison of the ener-
gies of given shapes;'%"1® (2) variational analysis of the sta-
bility of a given shape;'*!® or (3) tracking shape evolution
through a curve dynamics formalism based on a static free
energy functional.! None of these approaches is expressly
designed for (or in the first two cases, capable of) predicting
domain shapes which minimize free energy.

In this study, we build on the variational approach to
predict the shapes of phospholipid domains. Instead of sim-
ply examining the functional derivatives of energy for a
given shape, however, we take the next logical step and solve
the Euler-Lagrange equation, which is formed by setting the
first functional derivative equal to zero. The complexity of
this undertaking is by no means conceptual; it is in the
implementation. The Euler—Lagrange equation is both non-
linear and integral differential. Moreover, it does not fall into
any of the traditional classes of problems common to scien-
tific or engineering work. The closest example of which we
are aware is the calculation of the shape of a rotating drop by
Brown and Scriven.'® The free energy functional for the
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phospholipid domain, however, contains elements which ren-
der the problem significantly harder.

The purpose of this paper is twofold. First, we present
the results obtained by solving the Euler—Lagrange equation
for domain shape, especially those results which could not
have been found using any of the three previously applied
approaches. Second, we present graphical differentiation, the
novel numerical tool we developed, necessary for efficient
solution of the problem. The remainder of this paper is there-
fore divided into three main topics. Section II presents the
energy model and outlines the general solution strategy (spe-
cific implementation details are provided in an appendix).
Section III presents and discusses the results of our shape
calculations, comparing them when applicable to studies by
McConnell,10 Vanderlick and Moéhwald,'? and Deutch and
Low.'> Section IV presents the method of graphical differen-
tiation.

Il. BACKGROUND
A. Energy model

Following the analysis of McConnell et al.,'° an isolated
domain of fixed area (A,) takes the shape which minimizes
the domain’s free energy. Clearly, in such an analysis, only
shape dependent contributions to the free energy need be
considered. For domains in a phospholipid monolayer, these
contributions arise from interfacial tension and electrostatic
repulsion.

The interfacial free energy arises from the excess free
energy associated with the existence of an interface between
the domain and the surrounding continuous phase. It is mod-
eled here as simply a line tension \ acting along the domain
perimeter P,

Fi=\P. 2.1
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Because F' scales as the perimeter, this contribution to the
free energy promotes compact circular domains.

The electrostatic energy arises from the dipole moment
associated with phospholipid molecules at an air/water inter-
face. The shape dependency of this contribution is due to the
fact that domains possess higher dipole concentrations than
the less dense continuous phase which surrounds them. In
this work, the axis of the dipole moment is assumed to be
normal to the water surface. The electrostatic free energy F~
is therefore modeled as

r—r
pE_ M JJ gil rl_I)dzr, .

where D is all points in the domain, u is the difference
between the dipole density of the domain and that of the
continuous phase, and g(r) is the pair distribution function
of dipoles. Because parallel oriented dipoles repel one an-
other, F£ promotes elongated, noncircular domains. We note
here that some previous shape studies, notably McConnell
and Moy'! and Langer et al.,! have used an alternate form of
F® which considers the dipolar domain of a charged capaci-
tor rather than a collection of discrete dipoles.

The pair distribution function g(r) present in Eq. (2.2) is
necessary to prevent the inclusion of a nonintegrable singu-
larity at r=r'. Physically, g(r) must vanish at small separa-
tions to account for the nonoverlap of dipoles and must ap-
proach unity at large separations, where the density
distribution becomes uncorrelated. The simplest expression
which meets these criteria is the Heaviside step function

(2.2)

1, =46
un:%v—&=h e (2.3)

, r<é

where § is a parameter representing the distance of closest
approach between molecules. The inclusion of a Heaviside
function in Eq. (2.2), however, makes evaluation of F E and

J

F= F’+FEf JRAO)+R2(0)d 0+~ f”fkw)f‘f

The problem is next transformed from continuous to discrete
by approximating the shape of the domain as a linear com-
bination of trial functions

R(8)=2, a,®(6), (2.6)

i=1

where ®;(6) are N predefined trial functions on the interval
0<(0,27r) and a is the corresponding vector of N unknown
shape coefficients, the variables of interest in the discretized
problem.

its derivatives cumbersome. To simplify the evaluation, an
alternate pair distribution function has recently been pro-
posed and used in other shape calculations!*!718

r3

S

Here A is a parameter on the order of the smallest interdipole
separation. We have previously demonstrated'? that for the
unique case of circular domains, the value of F Eis indepen-
dent of the choice of Eq. (2.3) or Eq. (2.4) if A is set equal to
2 6/e. In this study, as with our earlier paper, the Heaviside
pair distribution function will be used exclusively.

(2.4)

B. Solution strategy

Calculation of the shape of a fixed-area (A,) domain
requires determining the shape(s) which minimizes the free
energy. This may be accomplished using the following nu-
merical algorithm, which is based on that used by Brown and
Scriven'® for the rotating drop problem. This algorithm is
primarily a five step process: identification of the appropriate
variables, formulation of the governing equations, solution of
the equations, evaluation of a solution’s stability, and con-
tinuation of the solution through parameter space. We are by
no means trying to imply that any of these steps are concep-
tually challenging; this overview is included simply to famil-
larize the reader to our approach.

1. Identification of the variables

The problem is cast into dimensionless form by scaling
all lengths by the interdipole distance & and all energies by
the quantity AJ. Doing so reveals that the solution depends
on only two parameters—the domain area A, and the ratio of
electrostatic to interfacial forces u*/\, henceforth referred to
as the dimensionless dipole strength I'. The free energy equa-
tion is thus expressed as

r(6") FNFP+r2=2rr" cos(6—6")—1]

r'rdr'd@'dr dé.
(2.5)

NP +r?=2rr" cos(6—6')>

2. Formulation of the governing equations

In order that a shape minimizes the energy of the do-
main, it must satisfy the condition that the first functional
derivative equals zero. Because of the constant area con-
straint, however, the method of Lagrange multipliers is ap-
plied to form the appropriate energy functional, specifically,

SIR(6)]=FF[R(8)]+ F'[R(8)]

1 (2w
+y EJ'O RZ(H)dG—AO). 27

Here 7y is the Lagrange multiplier, an additional variable in
the problem. For the continuous problem, the governing
equations are
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8% 1 (2
—j R*(9)do=A,, (2.8)

RO -% 2],

a complex set of integral-differential equations. The dis-
cretized problem, however, requires N+ 1 governing equa-
tions. The first N equations are formed by applying Galerkin
weighted residuals to the first functional derivative of
& —using the trial functions ®(6) as the weighting functions.
This is completely equivalent to differentiating ¥ with re-
spect to the shape coefficients. The final equation remains the
area constraint

2 Sy 2%
l%i:f _‘_q),(g)dg‘:_a;;’ =O, iE{l,z,...,N},
0 .

SR(6) ,
2.9)

.%N+]:A(a)"'A0=E =0.

3. Solution of the equations

Newton’s method is used to iteratively solve this set of
nonlinear equations. Given a good enough initial guess, it
always converges. It does so quadratically. And it provides
all of the information necessary for the evaluation of solution
stability. To solve Eq. (2.9), Newton’s method takes the form

(a) _(a) _{ Z (6A)/(a)] ™!
Yo, \7¥/, ([(8A)/(da)]T o,

(a:¢)/(aai)J
k

A(a)— A, (2.10)

Here _Z, not to be confused with the full Jacobian for the
problem, represents the matrix of second derivatives of &
with respect to the shape coefficients, i.e.,
i je{l,2,....N
,Zj_aaiaajs l,_]E{ by }

2.11)

4. Evaluation of solution stability
A domain shape must not only satisfy the Euler—
Lagrange equation to minimize the free energy, it must also
satisfy the condition that any area-preserving perturbation to
the domain 7 increase the free energy, i.e.,
Y oA

where E — 0.

da, ni= (2.12)

7' Zn>0,

!

A domain shape which satisfies Eq. (2.9) is stable therefore if
the minimum value of nTﬂ' 7 is positive. Evaluation of the
minimum value of WT&Q 7 is a simple matter of applying
Golub’s'® algorithm for determining the extrema of a sym-
metric matrix subject to side constraints. Specifically, the ei-
genvalues of the matrix P ZP are calculated and examined.

Here P is defined as
% oA\’
da j

oA
— . (213)

T ool
P=I-cc’, 72

where c¢;=

The vector ¢ is always an eigenvector of P ZP and the as-
sociated eigenvalue is always zero. Because ¢ blatantly vio-
lates

the area constraint, however, this eigenvalue is discarded. If
the remaining eigenvalues are positive, the solution repre-
sents an energy minimum, i.e., a stable solution. If any is
negative, the shape is unstable with respect to perturbations
along any eigenvector associated with a negative eigenvalue.
If any of the eigenvalues is zero, the solution is at either a
bifurcation or a turning point.?’

5. Parameter continuation

Up to this point, the algorithm has been based on a fixed
value of I'. To find the onset of a shape transition, however,
it is necessary to evaluate the solution as a function of T'. The
simplest means of accomplishing this is through a so-called
zeroth-order continuation. The solution is found for an arbi-
trary value of I', the value of T’ is adjusted, and a new solu-
tion is found using the previously found solution as the ini-
tial guess. This procedure is repeated until the solution has
been mapped over the entire range of interest.

The simple continuation method just described, however,
cannot be used near a bifurcation or a turning point in I". In
the neighborhood of either of these points, the Jacobian be-
comes nearly singular and Newton’s method fails to con-
verge due to numerical round-off error. This complication
may be circumvented by introducing a new parameter to the
problem specifically for continuation. We found it conve-
nient to use for this continuation parameter /., the in-plane
moment of inertia about the origin normalized to a circle of
area Ay,

27

I.. R @)d6.

] 2.14
=347, 214

Admittedly I, cannot be used to continue along the trivial
solution branch of circular domains (shown in the next sec-
tion), but it can be used along all other solution branches.
Moreover, because 1,,>>1 on all noncircular branches, it is
an ideal parameter for initiating continuation along them,
i.e., when the initial guess is a circle. Incorporation of I,
into Newton’s method requires treating I' as an additional
variable rather than as a parameter. To accommodate this
new variable, Eq. (2.14) is added as an additional residual
equation.

. RESULTS AND DISCUSSION

The heart of the solution diagram is depicted in Fig. 1.
Domain shape, as measured by the 7,, moment, is plotted as
a function of dimensionless dipole strength with representa-
tive solution shapes included alongside the curve. Many fea-
tures of this curve are readily apparent. Circular domains
always solve the Euler—Lagrange equation; they are not,
however, always stable solutions. They are stable for small
[, when line tension dominates, and unstable for large T,
when electrostatics dominates—as intuition would suggest.
The onset of circular instability signals the first of many
solution bifurcations from the circular solution branch. The
values of the four shown bifurcations are given in Table I and
compared with values predicted by Keller et al.,'® Vanderlick
and Miihwald,12 and Deutch and Low;15 the line tension has
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FIG. 1. The solution diagram of domain shape (plotted as normalized /) vs
dimensionless dipole strength in the neighborhood of the first four bifurca-
tions from a circular domain. Domain area is 10*78%. Stable solutions are
shown as solid lines; unstable solutions as broken lines. Inset figures depict
the shape of the domain at various points along the solution curve.

been adjusted to account for the use of different expressions
for F¥ in each study.'® All of these results are in good agree-
ment.

The first solution branch which bifurcates from the cir-
cular solution represents ‘“‘bilobed” domains. The second
branch represents ‘“‘trilobed” domains. Subsequent branches
represent increasingly higher order lobed domains. The
branches bifurcate subcritically, i.e., I, initially increases
with decreasing I'. Eventually each branch passes through a
turning point, after which /,, increases with increasing I'. For
values of /_, between the bifurcation and the turning point,
the solution shapes are unstable with respect to their own
class of shapes and all lower order lobed perturbations, e.g.,
along the trilobed branch, the solutions are unstable to both
bilobed and trilobed perturbations. Above the turning point,
the solutions are unstable only with respect to lower order
lobed perturbations. Assuming that this trend continues for
all solution branches, the only noncircular solution branch to
ever represent stable shapes is the bilobed branch.
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FIG. 2. The free energy difference between circular and bilobed domains in
the neighborhood of the first bifurcation. Fy represents the free energy of a
circular domain. Area is 10*78?%. Stable solutions are shown as solid lines;
unstable solutions as broken lines. The formal transition occurs when the
circle and bilobe branches cross at I'=0.2138.

The only shapes which ever minimize the free energy of
the phospholipid domain, therefore, are circles at low I" and
bilobes at high I'. Because the bilobed branch bifurcates sub-
critically and because the solutions along this branch are un-
stable up to the turning point, exactly two stable solutions
exist when I is greater than the turning point value (0.2127)
and less than the bifurcation value (0.2143). As shown in
Fig. 2, a circular domain initially (reading from low to high
I'} has the lowest free energy; a bilobed domain is meta-
stable. As I increases, the free energy of the bilobed domain
decreases with respect to the circular domain and eventually
becomes the lowest free energy, at which point, circular do-
mains are metastable. Formally, the transition from circles to
bilobes as the most stable domain shape occurs when the
energies of the two solutions cross (I'=0.2138). Both solu-
tions remain, however, local energy minima for the entire
range of solution coexistence. An energy barrier must conse-
quently exist between them for the entire range of coexist-
ence. The transition is therefore first order (discontinuous)

TABLE I. A comparison of the onset of circular instability" to previous studies: Keller et al. (Ref. 10),
Vanderlick and Mohwald (Ref. 12), and Deutch and Low (Ref. 15). Previous results were adjusted to correct for
the use of different expressions for the electrostatic free energy. Here T',, is the value of T at the bifurcation to

n-lobed domains.

2 Reported Adjusted
Study I, Model used Correction | I, I, Is
Keller et al. 0.3762 Capacitor A—A=2u2 02147
Vanderlick and Mohwald ~ 0.3764 Capacitor A—A=-2u? 02148 02312 02456 02588
Deutch and Low 0.2734 g(r) A—A—p? 02147 02312 02456 0.2588
Present Work 0.2143  Heavyside g(r) 0.2143 0.2312 0.2455 0.2583

*Domain of radius R=1004.
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FIG. 3. Bilobe solution branches for various domain sizes, reported as mean
radius, R = vA, / 7r. From left to right, the solution curves are for mean
radii 10 00048, 50004, 20004, 100048, 5004, 20048, 1004, and 508. The inset
graph depicts the bifurcation value of I' as a function of mean radius—the
data points represent each of the shown radii; the solid curve represents the
least-squares fit T=[4/3+In(R/48)] !

rather than second order (continuous). One should expect to
find experimentally all of the characteristic markings of a
first-order transition—notably hysteresis and shape coexist-
ence. Stine and Stratmann®?' have reported results which
clearly show shape coexistence in a sterylamine monolayer.
Goldstein? has observed shape hysteresis in the similar sys-
tem of ferrofluid domains. No previous domain shape calcu-
lation has predicted this behavior.?

Figure 3 shows the affect of domain size on the circular
to bilobe transition. Specifically, the first solution branch is
plotted as in Fig. 1 for various domain areas. By plotting the
bifurcation as a function of domain size and fitting a curve
through this data, the value of the bifurcation is found to be
{1.33+In[R/(48)]}". This is exactly the same relationship
predicted for the hypothetical circular to elliptical transi-
tion.'® This relationship also follows the experimentally ob-
served trend that small domains are more likely to be circu-
lar, while large domains are more likely to be noncircular.

Possibly one of the most important facts about the solu-
tion cannot be seen in either Fig. 1 or Fig. 3. The determinant
of the Jacobian matrix decays rapidly with increasing /,, or
A,. Physically, the potential well which governs domain
shape is becoming shallower; the driving force is becoming
weaker, allowing for larger acceptable perturbations. This is
witnessed in Fig. 4, which shows the first six eigenvalues for
the bilobed branch-—a measure of the energy cost associated
with shape perturbations along the corresponding eigenvec-
tor. The physical loss of driving force is reflected in the
numerical calculation of domain shape. With the Jacobian
approach being singular, its inversion becomes increasingly
sensitive to numerical round-off error; Newton’s method
eventually fails to converge. The noncircular solution
branches shown in Figs. 1 and 3 therefore do not represent
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FIG. 4. Lowest six eigenvalues of P 2P along the solution curve. The rapid
decay along the bilobe branch brings about decreasing ability to predict
domain shapes. The eigenvalues exist in pairs due to rotational degeneracy
for circular domains—i.e., the limit /.. =1.

the entire branch; they were terminated upon failure to
achieve convergence. Although more of the solution branch
could have been calculated by taking increasingly smaller
continuation steps or using increasingly more accurate
quadrature techniques, the return is increasingly small. Dou-
bling the quadrature discretization takes twice as much com-
putation time and only expands the curve from [, =2.95 to
3.25. Halving the step continuation step size also takes twice
as much computation time and only expands the curve to
1,,=3.0. Predictions of domain shapes through energy mini-
mization techniques are best suited for conditions which pro-
duce fairly compact, not necessarily circular, domains. For-
tunately, these are also the conditions under which the
physical driving force is most pronounced.

IV. GRAPHICAL DIFFERENTIATION

Although the solution strategy presented in Sec. II is
conceptually straightforward, the actual implementation is
hampered by the derivatives of the electrostatic contribution
to the free energy. Although the Heaviside function prevents
F* from containing a singularity, it makes numerical integra-
tion tedious. The Heaviside function is therefore removed
from the definition of F through a prudent coordinate trans-
formation. Unfortunately, this change of variables introduces
a new complication. The second derivative of F& canfiot be
evaluated in the new coordinate system and cannot be trans-
formed back into the original coordinate system. To confront
this problem, we could have used finite differencing of the
first derivative. This method, however, introduces additional
numerical round-off error. Instead, we devised the novel tool,
graphical differentiation, which enables us to express
( PF E)/(da ;a;) in an evaluable form.

J. Chem. Phys., Vol. 100, No. 11, 1 June 1994
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The first step in evaluating the derivatives of FE is differentiation of Eq. (2.2), yielding the first derivative of FE with
respect to a,

gFE [ 2v Crery FAVR(OZ+r T~ 2R(O)r cos(6-0)—1] ,
da; Ffo d9R(0)<I>,(6)f dﬁf RO+ 2RO reso-0) @D

Clearly Eq. (4.1) cannot be integrated analytically and numerical integration, although possible, would require extremely fine
discretization in the neighborhood of the point r, or [R(8),8]. Moreover, differentiation of Eq. (4.1) would spawn a Dirac
delta function, the result of which could not be evaluated analytically or numerically.

The very integrand of (8FF)/(da;) suggests utilizing a coordinate transformation. Rather than keeping the center of mass
as the origin, a temporary “local” origin is defined at r for integration over r' and #'. Local polar coordinates (£,¢) replace
global polar coordinates (r',8’); angle ¢=0 is defined to point directly away from the global origin (see Fig. 5). Applying this
transformation to Eq. (4.1) yields

aFE 27 2 (p(dif) -1
5a—=rf do R(6)® e)f f V—%—gr-lfcﬁ (4.2)
i 0
|
Here p(¢;0) is the distance between the local origin and the ®(6) 1 ap(;6)
domain boundary at angle ¢—analogous to R(#) for the +R(8) sue) PUGO)  da, do|. (4.4)
global origin. In this form, the innermost integral of ' ' !
(0FF)/(da ;) can be evaluated analytically
E .8y —
oF” =T 2 d. 28 M d Evaluation of Eq. (4.4) requires the evaluation of
d6é R(6)D(6) X é.
da; 0 o0 p(&;0) [3p(#;6)1/(da;). Although p(¢h;6) is well defined, it cannot

(4.3)  be expressed in closed form. It can only be determined im-

Here ¢,(6) and ¢(6) are the two angles at which p(¢;6)=1 plicitly through the law of cosines
(see Fig. 5). Although (FF)/(da;) must still be evaluated
numerically, it is a significantly simpler integration than that

posed by Eq. (4.1). More importantly, the troublesome p=VRX(O)+RX(0')—2R(O)R(6 )cos(6—8'),

Heaviside function has been eliminated. (4.5)
The second derivatives of F¥ with respect to a are found '

by differentiation of Eq. (4.3)

i —rrﬁ de @ (0)[@ (o)f 'p(6:6) 1 do » R(6')cos(8—6')—R(0)

d=cos

da;oa;

@ p(d:6)

VR (@) +R*(6")Y—2R(O)R(6')cos(68—6")|

Because p(¢;6) cannot be explicitly expressed as a function
of a, standard differentiation techniques are ineffective in
evaluating [dp(¢$)]1/(da;). We therefore devised the tech-
nique graphical differentiation.

Graphical differentiation is a geometric approach to a
specific problem of differential calculus. Specifically, it ex-
amines finite changes in the distance between two points on
the domain boundary as the shape of the domain is varied by
a finite amount, extrapolating the ratio of these changes to
the infinitesimal limit. For the following discussion, the fol-
lowing nomenclature will be used. Point (7, as shown in Fig.
6, represents the global origin while point ' the local ori-
gin. The line segment connecting ¢Z and ¢’ has length [,
equal to R(#). Point .7 is the intersection of the line drawn
through %' at angle ¢ with the perimeter of the domain. The
line segment connecting 7 and &” has length [, equal to

FIG. 5. Coordinate transformation from the global origin (%) to a local R(#"). The line segment connecting /&' and 7 has length !
origin (') located at r. The function p(¢;6) describes the shape of the (6. g g¢ ‘ gt 43,

domain based on this local origin. The points p, and p, represent the limits equal to P(¢; 0). Finally, line 7 is the tangent FO the domain at
of integration, or where p(¢;8)=1. # and the B is the angle between 7 and @,

J. Chem. Phys., Vol. 100, No. 11, 1 June 1994
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FIG. 6. Graphical differentiation of p(¢;6) through finite perturbations of
domain shape. The points % and (%" represent the global and local origins;
the line segments /,, /5, and /5 represent R(8), R(6'), and p(¢;6), respec-
tively; the point 7” represents the point at which p(¢;6) intersects the domain
perimeter, and S is the angle of the tangent 7at /> (a) When [, is increased
by Al,, the length of /; increases at both ends; by A/;, near the local origin
and by Al,,—shown here as a decrease—near .7°. (b) When [, is increased
by Al,, the length of !; increases by Al;.

In this graphical context, the desired derivative
[dp(¢;6)1/(da;) becomes (dl3)/(da;). The value of I5 de-
pends only on the location of the points <7’ and 7, which in
turn depend only on /; and /,. It follows therefore that

dly _aly dl, dly dl;
b 6!1 (9(1] 6‘l2 19(1]

Al Al
= lim - ®,(#)+ lim —lcbj(e'). (4.6)
2

Alj—0 Al Aly—0 A

The key to graphical differentiation is setting up the problem
such that the ratios (Al;)/(Al;) and (Al3)/(Al,) are inde-
pendent of A/, and A/, and therefore need not actually be

P*FE
&a,-r?aj

¢2(8) p(ep;6)—1
s Pl 0)

2w
=rf0 dé @i(o)[cpj(a) dé

evaluated in the infinitesimal limit. To do so, the perimeter of
the domain is approximated by the tangent 7 in the neighbor-
hood of 7. The ratio (Al;)/(Aly) [or (Al3)/(Al,)] is then
determined by extending /, by a finite A/, {(or [, by a finite
Al,) and evaluating Al5. By using the tangent rather than the
actual perimeter, the ratios are independent of Al, and A/,
while the perimeter is represented correctly in the infinitesi-
mal limit for any linear term.

Before extending either [, or /,, however, the relation-
ship between ¢ and &' must first be established. In the global
origin basis, ¢ is a function of the angles # and 6’ and the
shape coefficients a. In the local origin basis, ¢ is a function
of 6, ¢, and a. Because Eq. (4.4) is in the local origin basis,
# and ¢ must be held constant during differentiation. It is 8’
which varies, therefore, as the shape of the domain changes.

In Fig. 6(a), the change in /4 is shown for an increase in
{, of Al,. The point &" represents the new location of the
local origin Al, past &' on the line /%', The point 7’
resides at the intersection of the line drawn through <" at
angle ¢ and the tangent 7. Projection of the line segment
connecting ' with 7 onto the line segment connecting 7"
with 27’ reveals two contributions to the change in /5. These
individual changes Al;, and Al;, can easily be shown to be

Aly,=Al; cos(m— @),

Aly,=— Al sin(7m— @)cot(B—dp+ 60— 0).

In Fig. 6(b), the change in {; is shown for an increase in
I, of Al,. The local origin remains at <&'. The tangent line,
however, moves to 7/, parallel to 7 and separated by the
distance A/, along the line (%.77. The point 7' resides at the
intersection of 7' and the line drawn through &' at angle ¢.

The change in [, is the distance between & and 7*'. This
change Al; determined from the law of sines is

4.7)

sin( 7~ )
sin(B—¢+6' —6)°

Plugging Egs. (4.6)-(4.8) and the definition of
B=cos {[R(8)'(6")V/[R*(6')+R’*(6")]} into Eq. (4.4)
yields

Al3=Alz

(4.8)

+R 0j¢2(0) R(0’)<I>j(0’)—[R(9’)cos(()’—0)+R’(6')sin(0’—6)]d>j(0)
o0 P(B)R(E )cos(¢—6'+0)—R'(6")sin(¢— 6"+ 6)]

de}. (4.9)

Through a generous dose of algebra and trigonometric identities, (d$)/(d8’) can be shown to be

d¢ R(8')cos(dp—6'+6)—R' (8" )sin(p— 8"+ 0)

46" JR(6)+R%(8')—2R(OR(8 )cos( 6 — 6)

(4.10)

which allows Eq. (4.9) to be translated cleanly into the global coordinates as
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o50) R(6")D;(8")—[R(6')cos(6' - 8)+R'(8")sin(8'— 6)1D () 16

4.11)

+R(0)f

V. CONCLUSIONS

Direct numerical computation of domain shapes through
variational analysis provides information about domains
shapes which cannot be acquired using simpler techniques.
Where it does overlap previous studies, specifically determi-
nation of the onset of circular instability, it produces very
comparable results. Numerical computation, however, re-
veals that the only stable domain shapes are circles and bi-
lobes. Moreover, the transition between these two shapes is
discontinuous, a finding backed by experimental data. Fi-
nally, examination of solution stability reveals a second, pos-
sibly more important, result: the driving force which deter-
mines domain shape rapidly decays with increasing domain
size and elongation.

The primary obstacle to implementing a numerical cal-
culation of domain shape is evaluation of the derivatives of
electrostatic energy. The source of the difficulty, the Heavi-
side function, can be eliminated through a prudent coordinate
transformation. This transformation, however, produces
terms which cannot be evaluated directly. Instead, our novel
mathematical tool graphical differentiation must be em-
ployed. Together, the coordinate transformation and graphi-
cal differentiation completely eliminate this only substantial
obstacle.

Future work in domain shape calculation should consist
of a two-pronged attack. First, the results presented here
should be expanded to examine the effects of tilted dipole
moments, anisotropic line tension, and multiple domain in-
teractions. Second, shapes which do not minimize domain
free energy should be examined. Such studies might involve
dynamic studies similar to those undertaken by Langer et al.'
which find a plethora of metastable domain shapes, and
which should not be limited to nearly circular domain shapes
as are energy minimizing calculations.
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APPENDIX: COMPUTER IMPLEMENTATION

Throughout the body of the paper, the solution strategy
was presented without specific details. The trial functions

8](6) VR2(8)+R%(0")—2R(6)R(6')cos( 8’ — 6)°

f

and quadrature techniques used to calculate the results given
in Sec. III were intentionally absent. An accurate solution
diagram must be independent of these details. Careful imple-
mentation of numerical methods can, however, significantly
improve computation time.

The shape of the domain R(#) was approximated using
57 cubic Hermitian basis functions®* defined over 29 dis-
cretization nodes. This is the simplest set of polynomial finite
elements which provide both continuous first and second de-
rivatives of R( ), both of which are necessary in evaluating
the Jacobian. Following conventional usage, two Hermitian
polynomials were defined for each discretization node—one
with unit magnitude and zero slope; the other with unit slope
and zero magnitude. These basis functions, however, as with
almost any other choice, allow for translational and rota-
tional degeneracy in the domain shape. Elimination of rota-
tion was accomplished by simply setting the coefficient of
the first slope Hermitian polynomial to zero, thus the use of
an odd number of basis functions. Elimination of translation
was accomplished by imposing two new side constraints on
the problem; the x and the y components of the center of
mass are set equal zero.

Adaptive discretization?>~>’ was used to increase the ac-
curacy of the approximated solution without sacrificing com-
putational efficiency (i.e., without increasing the number of
basis functions). Rather than defining discretization nodes at
equal intervals of #, the nodes were distributed such that the
domain perimeter was equally partitioned between nodes,
ie.,

6+
;/>,-=f 'R0+ R 2(6)d6~K=0,
8;

27

i e{1,2,..,n}, (A1)

where K is the length of perimeter associated with each ele-
ment and # is the number of nodes [ =1(N+ 1)]. More basis
functions were therefore used in regions where the shape
changed the most rapidly. (See Russel et al.®® for a summary
of 15 alternative adaptive strategies.) This perimeter adaptive
scheme has two attractive qualities: it is conceptually
straightforward and it is not susceptible to nodal bifurcations,
which may switch the sequence of adjacent nodes.

The nodal positions were solved using a second Newton
iteration between each continuation step, as suggested by
Benner et al.’’ Because the new nodal positions were not
solved concurrently with domain shape, the continuation
steps had to be small enough that the final shape was not be
significantly different from the initial guess. Changing the
distribution of the nodes without updating the shape coeffi-
cients, however, results in distortion of the initial guess. This
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distortion can become large enough that Newton’s method
fails to converge, even if no continuation step is taken. To
minimize distortion, the shape coefficients were recalculated
along with the nodal positions such that the square of the
difference A between the new shape and the original shape
was minimized

A={""[Rr(8)-R*(8) 6. (A2)
0

Here R(#) is the shape based on the new coefficients and
nodal placement and R*(6) is the shape based on the old
coefficients and nodal placement.

All of the many numerical integrations can be grouped
into one of two classes: integration over # or integration over
¢#'. Because p(¢;6) cannot be expressed in closed form, the
terms in Eqgs. (4.3) and (4.11) integrated over ¢ are actually
evaluated over 6'. Integrals over # have integrands of fairly
constant magnitude. They were evaluated using a four-point
Gaussian quadrature on each discretization element. Integrals
over &, which descend from F E, have integrands which vary
by many orders of magnitude. Remember that these integrals
would have contained a singularity were the pair distribution
function absent from the definition of F£. They were evalu-
ated using a nonuniformly discretized trapezoid rule, specifi-
cally,

1+ tanh{[(2{)/N,]x— x}
2 tanh(x) ’
For the work presented here, values of =3 and N, =200

were used. (Note that if #; < 6], then 27 + 6; should be
substituted for 8, .)

0; =01+ (6,~6)) (A3)
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