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Dispersed domains in a two-phase insoluble phospholipid monolayer exhibit amyriad of shapes. Domain 
shapes can be predicted using a free energy analysis put forth by McConnell. One contribution to the 
free energy of an isolated domain is the electrostatic energy arising from dipolar interactions between lipid 
molecules. The expression for this electrostatic energy, however, cannot be evaluated analytically and is 
cumbersome to compute numerically. In this paper, we derive two simplified, yet rigorous, formulations 
of the electrostatic energy, one being more computationally efficient for circular domains, the other for 
noncircular domains. We used these rigorous expressions to repeat two previously reported shape 
calculations that were based on an approximation to the electrostatic energy. Our results differ from the 
original results by an amount proportional to the domain perimeter, offering a bridge between our energy 
functional and the approximated one. 

1. Introduction 
Monomolecular films of phospholipids residing at the 

air-water interface undergo a variety of two-dimensional 
phase transitions. In one particular two-phase regime, a 
so-called liquid-condensed phase coexists with a less dense 
liquid-expanded phase. The liquid-condensed phase is 
dispersed in the form of domains which can be directly 
visualized using the technique of fluorescence video 
microscopy.'+ A myriad of different domain shapes have 
been experimentally observed. While different lipid 
monolayers each form domains of a characteristic shape, 
a given monolayer may exhibit reversible shape transitions 
when, for example, the temperature or domain size is 
~ a r i e d . ~  

Following the analysis of McConnel1,B the shape of an 
isolated domain results from a competition between line 
tension and electrostatic repulsion. The line tension arises 
from the excess free energy associated with the formation 
of the interface between the liquid-condensed domain and 
the surrounding liquid-expanded phase. This line tension 
acta to minimize the perimeter of a domain, thus promoting 
compact, circular shapes. The electrostatic energy arises 
from interactions between the oriented dipole moments 
of lipids anchored at  the surface of water. The excess 
dipole density of the liquid-condensed phase relative to 
the liquid-expanded phase acts to form noncompact, 
needle-like domains. The predicted domain shape is the 
one that minimizes the free energy as given by the sum 
of interfacial and electrostatic contributions: 

The interfacial free energy may be expressed as 

where X is the line tension and P is the perimeter of the 

F = F ' + P  (1.1) 

F'=w (1.2) 
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domain. If the domain is considered to be a collection of 
vertically oriented dipoles, the electrostatic energy may 
be expressed as 

where p is the average excess dipole density andg(r) is the 
pair distribution function. 

Physically, the pair distribution function must be zero 
at  small separations to account for the nonoverlap of 
molecules; it approaches unity at  large separations, where 
the density distribution becomes uncorrelated. The 
simplest pair distribution function which meeta these 
criteria is the Heavyside step function: 

where 6 is aparameter representing the distance of closest 
approach between molecules. Mathematically, it is es- 
sential that any model chosen for the pair distribution 
function be of a form suitable to render the integrand of 
FE nonsingular. Clearly, the Heavyside step function 
accomplishes this. Ita presence, however, prevents analytic 
evaluation of the electrostatic energy. Furthermore, 
numerical evaluation is cumbersome because the integral 
is fourth order with an integrand which changes rapidly 
in the neighborhood of the singularity. 

To simplify the evaluation of the electrostatic energy, 
McConnella proposed an approximation to F based on 
the analogy between a domain of dipoles and a capacitor 
of finite size: 

Here t is the capacitor thickness and X is a vector from 
the origin to a point on the perimeter of the domain. 
McConnell and co-workers have used this capacitor 
approximation in the prediction of the equilibrium radius 
of circular domainsg and the transition from circular to 
elliptical domains.8 Vanderlick and M6hwaldlo used it in 
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their prediction of shape transitions of domains with 
regularly undulating boundaries. 

More recently, McConnell et al.11J2 proposed an alter- 
native pair distribution function of a mathematically 
judicious form which produces a continuous, yet simple, 
integrand in the expression of the electrostatic energy. 
This pair distribution function is given by 

Henceforth, we use the tilde notation to distinguish 
functionals based on g(r) from those based on the 
Heavyside step pair distribution function. The free energy 
functional, p,  is therefore given by F + where 

Here the parameter 6 no longer serves as a limit of 
integration, but is still on the order of the nearestrneighbor 
separation between molecules. An advantage of usingg(r) 
is that if the radius of curvature along the entire domain 
boundary is much longer than 6, then FE reduces to12 

where P denotes the perimeter. It can also be shownll 
that the integral term of the capacitor approximation, eq 
1.5, equals the integral term in this expression for p. It 
follows, therefore, that if the line tension used in the 
capacitor approximation is artificially decreased by p2, 
Le. &A = X - p2, the capacitor approximation is identical 
to b (except for the term which is proportional to the 
area). 

It is not necessary, however, to reject the original 
(Heavyside) pair distribution function because of the 
complications associated with having a discontinuous 
integrand in the expression of the electrostatic energy: 
these can be overcome. In this paper, we develop two 
simplified, yet rigorous, formulations of this electrostatic 
energy. (Henceforth, the electrostatic energy based on 
the Heavyside function will be referred to as simply “the” 
electrostatic energy functional, and denoted by F). In 
the first formulation, Green’s theorem is used to reduce 
both of the area integrals in eq 1.3 to contour integrals. 
The resulting expression allows us to identify explicity 
the source of the difference between the capacitor ap- 
proximation and the electrostatic energy functional. In 
the second formulation, a prudent coordinate transfor- 
mation is used to reduce the integral in eq 1.3 from fourth 
to third order. This second expression can be computed 
more efficiently than the first, except in the case of circular 
or nearly circular domains. Finally, we describe quanti- 
tatively how results of certain domain morphology cal- 
culations (those based on circular domain shape) obtained 
using the capacitor approximation relate to the results 
based on the electrostatic energy functional. 

2. Derivation of Two Simplified Electrostatic 
Energy Expressions 

A. Reduction of the Area Integrals through Green’s 
Theorem. In the first simplification of the electrostatic 
energy, both of the area integrals in eq 1.3 are reduced to 
contour integrals using Green’s theorem:13 

(11) McConnell, H. M. Annu. Rev. Phys. Chem. 1991,42,171. 
(12) McConnell, H. M.; de Koker, R. J. Phys. Chem. 1992,96,7101. 
(13) Salas, S. L.; Hille, E. Calculw: One and Several Variables, 4th 

ed.; John Wiley and Sons: New York, 1982; Chapter 19. 

Figure 1. (a) Second application of Green’s theorem which 
requires defining two distinct regions of the domain: 01 is that 
portion of the domain further than 6 from the perimeter, and Q2 
is the remainder. The curve W separates Q1 and $22. (b) When 
r E 01, the boundary of RS consists of two closed curves: the 
perimeter, P, and a circle of radius 6 centered at r, C. (c) When 
r E Rz, the boundary of Q’ is a single closed curve consisting of 
two parts: P, the portion of P which is external to C, and e, the 
portion of C which lies internal to Q. e intersects P at the two 
angles and 02. 

where e is the boundary of region fD and n is the outward 
unit normal to @. To do so, however, the electrostatic 
energy is first rewritten as 

-P 
r2/2 
- = -JJxF(Ir* - rl - 6)lr* - rr3 d2r* d2r = 

JnJQ*V**V.r d2r* d2r (2.2) 

Here Q is all points of the domain, Q*, which is a function 
of r, is that portion of 8 which meets the separation 
restriction Ir* - rl > 6, and r is defined as 

(2.3) 

The inner area integral of FE can now be reduced directly 
to its contour integral equivalent: 

(2.4) 

where n* is the outward unit normal to Q* and S* is the 
arc length along the boundary of Q*. 

Before Green’s theorem can be applied to the remaining 
area integral, eq 2.4 must first be cast into the form of eq 
2.1. To do so, two distinct regions of $2, as shown in Figure 
la, are defined: Q1 as all points of 8 located further than 
6 from the perimeter P, and 82 as all points of 8 located 
closer than 6 to the perimeter. As shown in Figure lb, 
when r E 01, the boundary of 8* consists of two 
nonintersecting closed loops: P, the perimeter, and C, a 
circle of radius 6 centered at r. As shown in Figure IC, 
when r E 8 2  the boundary of Q* is a single closed loop 
formed by the union of P and c, where P is that portion 
of P more than 6 from r and is that portion of C which 
is contained in Q. The integral in eq 2.4 can thus be 
expanded as follows: 
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The normal to C, or to e, is the unit vector pointing to 
the center of C. In this case, it can easily be shown that 

n'.~.7 = -116~ (2.6) 
Hence, the summation of those terms in eq 2.5 which 
integrate over C or e reduces to 

where A is the area of the domain and 2a - 4 equals the 
internal angle of the arc e. 

The normal to P, or to ?', is independent of r. Hence, 
the summation of those terms in eq 2.5 which integrate 
over P or f) may therefore be rewritten as 

Likewise, the perimeter P of the domain is independent 
of r, and therefore 

Unlike P, however, P is a function of r and from the 
Leibnitz rule 

where 81 and 02 are the hgles at which ?' ik rsec ts  e, as 
shown in Figure lb. 

Green's theorem can now be applied to the first term 
on the right-hand sides of eqs 2.9 and 2.10: 

jpJJn.7m* ds' ds (2.11) 

where W is the boundary between 511 and 512, the "+" 
indicating an outward normal and u-n an inward normal 
(Figure 1). Since P is identical to P when r f W, the first 
two terms on the right-hand side of eq 2.11 cancel. 

Finally, collecting eqs 2.6, 2.8, and 2.9-2.11, the elec- 
trostatic free energy can be written as 

where X E Pand X* E P. We shall refer to this expression 
from here on as the rigorous contour expression (RCE). 
B. Reduction from Fourth-Order to Third-Order 

Integration Using Coordinate Transformation. In the 
second simplification of the electrostatic energy, the 
integral is reduced from fourth to third order using a 
prudent coordinate transformation. Specifically, the inner 
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\ 
Figure 2. Desired (shaded) region of integration for Wr) which 
can be selected by applying the Heavyside step function either 
to 5 or to 4, in which case the limits of integration for 4 are shown 
with dashed lines. 

area integral of eq 1.3, defied here as fP(r), is rewritten 
using polar coordinates with origin at  r: 

q(r) = $%(lr* - rl - 6)Ir' - rr3 d2r* = 

Here [ = Ir* - rl and p ( 4 )  is the distance from r to the 
domain boundary at polar angle 4. Alternatively, the same 
region of integration can be achieved by raising the lower 
limit on [ to 6 and restricting 4 to those angles for which 
p ( 4 )  > 6, as illustrated in Figure 2. In this case, q(r) takes 
the form 

The integral over [ can now be evaluated analytically 

Using the relationship % ( x )  = 1 - %(-x), \k(r) can be 
rewritten as 

J2rL %(6 - ~(4 ) )  dt$ (2.16) 
0 6  

or more simply 

(2.17) 

where p*(+) is defined to be the greater of p(4 )  and 6. 
Substituting eq 2.17 in eq 1.3, the electrostatic free energy 
can be written as 

(2.18) P 2rA 

We shall refer to this expression from here on as the 
coordinate transformation expression (CTE). 

3. Numerical Evaluation of the Electroatatic 
Energy 

All of the values of FE reported in this paper were 
computed numerically using trapezoid rule integration. 
All area integrals were evaluated in polar coordinates. The 
discretization of each integral, however, depended upon 
the form of ita integrand. 

Integrals in which the integrand was of similar mag- 
nitude for the entire range of integration were discretized 
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uniformly; i.e. 

Axi = a, (3.1) 

Here x is some variable of intagration and a, is the distance 
between the nodes in x .  To ensure convergence of 
integration, each a was repeatedly halved until the relative 
difference between consecutive values of the integral was 
less than 0.01 ?6. This discretization method was used to 
evaluate the integrals over the angular component of X in 
the RCE and the capacitor approximation, the radial and 
angular components of r in the RCE, and the angular 
component of r in the CTE. 

Integrals in which the integrand varied by many orders 
of magnitude over the range of integration were discretized 
nonuniformly such that the distance between nodes was 
inversely proportional to the integrand; i.e. 

Axi = (3.2) 

Here x is again some variable of integration and is a 
proportionality constant for the distance between the 
nodes in x .  As with the a's, each 19 was repeatedly halved 
until consecutive values of the integral differed by less 
than 0.01 % . This discretization method was used for the 
integrals over the angular component of X* in the RCE 
and the capacitor approximation, 4 in the CTE, and the 
radical component of r in the CTE. 

4. Comparison of the Computational Efficiency of 
the RCE and the CTE 

Both the rigorous contour expression (eq 2.12) and the 
coordinate transformation expression (eq 2.18) can be 
computed more efficiently than the original formulation 
of the electrostatic energy (eq 1.3). Because the RCE 
requires only second-order integration while the CTE 
requires third-order integration, it would appear that the 
RCE can always be calculated more efficiently than the 
CTE. The RCE, however, contains the integral over the 
terms which include VB1 and V82. The relationship 
between 61 (or 02) or r is defined implicitly through the law 
of cosines (see Figure lb); i.e. 

Bz 

integrand(xi) 

r2 + R2(8,) - 2rR(d1) COS (e, - e) - a2 = 0 (4.1) 

where r and 0 are the polar components of r and R ( 4 )  is 
the magnitude of X at angle 81. Newton's method or some 
other iterative root locating algorithm must be used to 
determine 81 for each r. Therefore, Vel (or VB2) must be 
evaluated numerically with a technique such as forward 
differencing: 

Mayer and Vanderlick 

where Ar and A0 are small but finite perturbations. 
Because of the extra iterative calculations required to 
evaluate VB1 and '782, the RCE cannot be computed as 
efficiently as the CTE. 

The RCE can recover ita numerical efficiency, however, 
if the VB's are approximated by assuming that the 
curvature of the domain boundary is insignificant (as 
detailed in the Appendix). While this approximation is 
accurate for large circular domains (R >> a), it becomes 
increasingly inaccurate as the domain becomes less circular. 
This is demonstrated in Figure 3 which shows the 
difference between the approximated RCE and the CTE 
for regularly undulating domains of the form R(0) = R(1 
- c COB (me)). In brief, the RCE can be calculated more 
efficiently than the CTE for domains which are nearly 

w- Ir;" -16.01, ,,C~ , , , , , , , , \ I  
RCE (spproxirmtedV8) 

-'8'o0.0 0.1 0.2 0.3 0.4 05 0.6 0.7 0.8 0.9 
E 

Figure 3. Electrostatic energy as determined by both the CTE 
and the approximated RCE for four series of domain shapes, 
defined byR(8) = R(1- t cos (me)). R waa chosen such that the 
domain area equals that of a circle with radius 1006. 

circular because V& and VB2 can be approximated accu- 
rately. Otherwise the CTE should be used. 

5. Comparison of Domain Morphology Results 
Based on the Rigorous Expressions and the 

Capacitor Approximation 
The free energy theory of McConnell (eq 1.1) can be 

used to predict domain shapes and associated shape 
transitions. Previous applications of this theory, however, 
have been based primarily on the capacitor approximation 
to the electrostatic energy. Using our simplified, yet 
rigorously derived, expressions of the electrostatic energy, 
we have repeated two of these domain morphology 
calculations: the equilibrium radius of circular domains 
and the transition from circular to elliptical domain shapes. 

The equilibrium radius, R,, of circular domains in a 
film with a fixed area fraction of domains, cp, can be 
determined using the method described by McConnell 
and Moy? The number of domains per unit area in such 
a film is Cpl(?rReq2), and the resulting free energy is 

where P and FE are the interfacial and electrostatic energies 
per domain of radius R. For a given ratio of X to p2, the 
equilibrium radius is that value of R which minimizes F. 
Using the capacitor approximation, McConnell and Moyg 
determined analytically that the equilibrium radius is 
(e36/4)eXIp2 (=5.026eA/cZ). Using the RCE, we calculated 
F as a function of R, and determined R, for various Alp2. 
Our results could be fit accurately with the curve R, = 
0.676e1.0x/fi2 (correlation coefficient 0.9998). 

A transition from a circular domain to an elliptical 
domain is predicted when Alp2 is greater than some critical 
value; above this value, the free energy of an elliptical 
domain is lower than that of a circular one. The onset of 
this transition can be determined through an analysis of 
the variation of free energy with elliptical eccentricity, 
bla, where b and a are the lengths of the principle axes. 
A plot of free energy versus eccentricity has zero slope at 
bla = 1, i.e., circular domains, because ellipses with 
eccentricity alb are 90° rotations of ellipses with eccen- 
tricity bla. Therefore, the transition from circular to 
elliptical domains occurs when the second derivative of 
free energy evaluated at bla = 1 equals zero. Using the 
capacitor approximation, Keller et al.* determined ana- 
lytically that this shape transition occurs when Alp2 = 
-10/3 + In (4Rl6) where R is the radius of the circular 
domain. Using the RCE, we calculated the critical value 
of Alp2 with the following algorithm. From a plot of F 
versus bla for a given domain area, we determined 
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Figure 4. Capacitor approximation and the RCE values of fe 
for circular domains as a function of domain radius. 

numerically the second derivative at b/a = 1 .for various 
X/p2. Then from a plot of these results, we determined 
the value of X/p2 for which this second derivative was zero. 
Repeating this procedure for various domain areas, we 
found that the onset of the shape transition could be fit 
accurately with the curve X/p2 = -1.33 + 1.0 In (4R/6) 
(correlation coefficient l.oo00). 

Clearly the capacitor approximation and the RCE 
produce significantly different results. The source of the 
difference between these two function& can be identified 
readily by comparing the capacitor approximation (eq 1.5) 
with the RCE (eq 2.12). Although the term which is 
proportional to area differs between the two expressions, 
this difference does not affect results of domain mor- 
phology calculations in which the area is held constant, 
such as those described above. Therefore, as a basis for 
comparison, it is convenient to define a new variable fE 
through the relationship 

where x = 4 r / t  for the capacitor approximation and x = 
2 ~ / 6  for the RCE (or the CTE). Furthermore, we define 
AfE to be the difference between fE for the RCE and the 
capacitor approximation: 

It is this difference which affects the results of constant 
area morphology calculations. 

Both of the domain morphology calculations described 
above were based on the free energy of circular domains. 
Figure 4 shows as a function of radius two plots of fE for 
a circular domain: one determined using the capacitor 
approximation, the other using the RCE. The difference 
between these two curves is proportional to the domain 
perimeter, AfE = -4.OP. Hence, from eq 5.2, the capacitor 
approximation overestimates by 2.0p2P. This has the 
same affect on the total free energy as overestimating the 
line tension by 2 . 0 ~ ~ .  Consequently, for this special case 
of circular domains, free energy calculations based on the 
capacitor approximation can be made to match those based 
on the RCE simply by replacing the line tension used in 
the capacitor approximation with an artificial line tension 
equal to X - 2.0~~. This can be easily verified in the two 
preceding examples. Moreover, because the capacitor 
approximation has been shown to match E when the line 
tension used in the capacitor approximation is replaced 
with X - p2, a bridge can be forged between the two energy 
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Figure 5;. Difference in fe between the capacitor approximation 
and the rigorous expressions for undulating domains as defined 
in the text. The domain area equals that of a circle with radius 
1006. 

c 

Figure 6. Geometric definitions used to approximate Vel. The 
perimeter of the domain is represented with the straight line L. 
The remaining vectors, line segments, and angles are defined in 
the Appendix. The origin is located to the far left of the figure. 

functional? F and E. Specifically, for the case of circular 
domains, F can be made to equal F simply by adjusting 
the line tension, Xp = XF - p2, or equivalently by adjusting 
the nearest-neighbor parameter, 6p = &/e. 

The capacitor approximation has also been used to 
determine free energy of noncircular domains. Vanderlick 
and Miihwald,’O for example, used it to predict the shape 
transitions of domains with regularly undulating bound- 
aries. Figure 5 shows AfE/Pfor this class of domainshapes, 
given by R(8) = R(1 - E cos (me)). Clearly AfE is not 
proportional to the perimeter for noncircular domains. 
Consequently, shape calculations based on noncircular 
domains depend strongly on the choice of energy functional 
and cannot be coerced into agreement simply by adjusting 
the line tension. Rather than repeating Vanderlick and 
Miihwald’s calculation, which is restricted to a particular 
class of domain shapes, we are currently using functional 
minimization to solve directly for the exact domain shape 
which minimizes the free energy.14 
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Appendix 
The integrand of the final term of the RCE contains the 

two divergences V81 and VB2. Using polar coordinates, 
these gradients may be expressed as 

Mayer and Vanderlick 

Differentiation of 01 yields 

a 4  
ar 
-= 

cos (a + y) + (r6/RI2) sin2 (a + y) 
cos y - 

COS (e, - e) (S2 - B2)’12 a 4  1 a 4  
ar r ae vel = - e, + - - 8 8  

a62 1 ae2 
ar r ae ve, = - 8, + - -e8 (A.1) 

The derivatives above may either be solved iteratively or 
approximated by assuming that the curvature of the 
domain boundary is negligible on the scale of the 6. In 
such a situation, the geometry of the system about 81 may 
be defined as shown in Figure 6. Let r = @,e) be the point 
at which we want to know VB1 and VB2, RI the vector to 
the perimeter at 01, R1 the magnitude of R(&), L the line 
approximating the perimeter, A the distance from r to L, 
colinear with r, B the distance from r to L, perpendicular 
to L, y the angle between line segments A and B, and a 
the angle between line segment B and RI - r. It follows 
then from the geometry of the problem that 

R’(e) ( (R2(8) + R’2(0))’/2 
) A = R(B) - r  y = sin-’ 

R, = (S2 + r2 + 2r6 cos (a + y))1/2 

sin (a + y) e, = e + sin-’ ( R,16 ) 

sin(a + y) (A.3a) I r + 6 cos(a + y) 
R,2 

and 

where 7’ = ay/ae = (Ri2(e) - R(e) RW)) l (R2(e )  + Ri2(8)). 
Similarly, differentiation of 02 yields 

cos(a - y) + (r6/R;) sin2 (a - y) 
COSY-  

COS (e - e,) (S2 - B2)1/2 

sin (a - y) (A.4a) 3 r + 6 cos (a - y) 
R,2 

and 


