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Above a critical surface pressure, lipid monolayers at the air/water interface form gellike domains which coexist with a less 
dense fluid phase. In this work, we employ the free energy theory of McConnell and co-workers to predict the shapes and 
associated shape transitions of regularly undulating lipid domains, Le., domains with boundaries that undulate with a characteristic 
mode and relative amplitude. The equilibrium shape is determined by a dimensionless number, r, which relates the importance 
of repulsive electrostatic interactions arising from the dipole moments of the lipid molecules to the effect of line tension. 
Shape transitions are predicted between successive modes as r is varied. While the mode of the shape with the lowest free 
energy increases with r, the relative amplitude of the undulation asymptotes to a limit. We also consider mixed-mode shapes 
formed by combining two distinct modes. For the cases examined, we find no evidence of mode coupling. We also show 
how the analysis can be used to interpret experimental observations, at fixed r, of the shapes of lipid domains as their area 
is varied. Shape transitions between higher order modes are predicted as the area is increased; over the range of areas where 
a given mode is the most stable, the relative amplitude of the undulation increases with increasing area. 

Introduction 
In  addition to their biological significance,'s2 phospholipid 

molecules are ideally suited for the study of self-assembly and 
associated phase transitions. It is now well established that certain 
lipid monolayers at the air/water interface undergo a first-order 
phase transition between a fluid and a more condensed gel 
In this two-phase regime, the gel phase exists as discrete domains 
within the continuous fluid phase. Using epifluorescence mi- 
c r o s c ~ p y , ~ ~  it is possible to visualize these gel domains and hence 
directly examine their growth, sizes, and shapes. 

One of the most interesting features of this domain formation 
is the variety of shapes that can develop. Miller and Mohwald 
have, for example, observed fractal structures whose growth is 
governed by diffusion-limited Such domains, 
however, anneal after time into their equilibrium shapes. Apart 
from the fascinating nonequilibrium microstructures and shapes 
that can occur, domains in equilibrium with the surrounding fluid 
phase can also exhibit a host of shapes that depend not only on 
the particular lipid system but also on the thermodynamic-state 
variables. While regular disklike domains can often be ob- 
served,lO~ll many lipid systems form domains with shapes that are 
distinctly noncircular. 

Lipid molecules at the air/water interface exhibit permanent 
dipole moments that are partially aligned to the surface. Those 
lipids with dissociable head groups can also possess a net surface 
charge. The more condensed gel phase therefore exhibits an excess 
dipole moment, and possibly an excess charge, relative to the fluid 
phase. Long-range electrostatic interactions between the lipid 
molecules control both the formation and shapes of the gel-phase 
domains3 and in general play an important role in the phase 
behavior of these two-dimensional systems. 
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Andelman et al.12513 have examined the effect of long-range 
dipolar forces on the phase behavior of insoluble monolayers. 
Using a free energy analysis, they found that repulsive electrostatic 
interactions can stabilize inhomogeneous monolayers for which 
the in-plane concentration is undulating. They predicted the 
existence of, and associated phase transitions between, ordered 
microstructures composed of stripelike (smectic), hexagonal, and 
inverted hexagonal phases. 

A similar free energy analysis was developed by McConnell 
and co-w~rkers'~ to predict the equilibrium shapes of isolated finite 
lipid domains. Within a single domain, the effect of repulsive 
electrostatic interactions is to maximize the average distance 
between molecules, thus favoring elongated, noncompact shapes. 
Opposing this tendency is the effect of line tension between the 
gel domain and the surrounding fluid phase. The line tension acts 
to minimize the interfacial area, thus favoring compact shapes. 
Using their theory, McConnell and co-workers showed that under 
specified conditions isolated domains can exhibit shape transitions. 
In particular, they analytically determined the conditions for 
various shape transitions such as circular to elliptical domainsIs 
and square to rectangular domains.I6 

One class of shapes that has often been experimentally observed 
consists of shapes with nearly periodic undulating boundaries. One 
such example is shown in Figure 1, taken from the work of 
FlOrsheimer.l7 Shown here is the growth of an isolated lipid 
L-a-dipalmitoylphosphatidylcholine (DPPC) domain held in a fixed 
position by using an electrode mounted above the water sur- 

The observation of such shapes has motivated us to 
examine the shape transitions of dipolar lipid domains between 
regularly undulating shapes characterized by discrete modes, for 
which the circular shape is a special (zeroth mode) case. 

Governing Equations 
Following the theory of McConnell and co-workers,1e16 the total 

free energy of an isolated dipolar domain can be expressed as 
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F =  F’ + F ~ +  F +  (1) 

where F 1  represents the interfacial contribution to the free energy, 
F E represents the electrostatic energy associated with the dipoles 
which constitute the domain, and F t  accounts for any remaining, 
shape-independent, contributions to the total free energy. 

Assuming that the interface can be approximated as a dis- 
continuity between the two phases, characterized by a line tension 
A, F1 is given by 

F 1  = XP (2) 
where P is the perimeter of the domain. The electrostatic energy 
of the dipolar domain is given by 

where p is the excess dipole density, i.e., the difference in dipole 
moment per unit area between the gel and fluid phases, and 6 is 
the Dirac delta function. Because the integrand diverges as the 
distance between dipoles goes to zero, the integrand must be 
constrained to values such that Ir - r’l > d, where d represents 
the interdipole distance. 

Using Greens’ theorem, McConnell and c o - ~ o r k e r s ’ ~  have 
shown that eq 3 can be expressed in terms of a double-line integral 
around the perimeter of the domain: 

( 4 )  

Here, t is the thickness of a dipole and X is the position vector 
to a point on the perimeter. The line integrals above are con- 
strained such that IX - X’l > d. 

Using polar coordinates, we express the vector X in the following 
general form: 

X = R(B)i?, (6) 
where P, represents the unit radical vector. The following general 
relations can then be derived. The perimeter is given by 

P = s, 2* (GI dX de = L2‘[R2((B) + R’2(0)]1/2 de (7) 

where R’(0) E dR(B)/dO. From eq 5 ,  the integral I is given by 

= s L(rB41>6- IX - X’l - de - de’ dB de’ (8) 
1 dX dx’ 

= J-J&,,,, (cos ( e  - O’)[R(8) R(0’) + Rye) R’(8’)I + 
sin (e - e’)[R’(e) R(0’) - R(8) R’(8’)])([R2(8) + R2(S’) - 

2R(8) R(W) cos(8 - dB de’ (9) 

Thus, P and I are readily found by quadrature. In the calculations 
reported herein, we employed Gaussian quadrature using 600 
points for integrals over each variable; the numerical accuracy 
by this method is better than 0.01%. 

We now consider the special case of regularly undulating do- 
mains, such as those shown in Figure 2. Such domain shapes 
are characterized by the following: 

(1 1) R(8) = A(l  + E cos (me) )  

where m denotes the mode, A the mean radius, and E the relative 
amplitude of the undulation. The relative amplitude ranges from 
zero to one: at t = 0 the shape is circular; at t = 1 the shape of 
the domain pinches off at the origin, Le., the domain falls apart 
into m pieces. 
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Figure 1. Growth of an isolated DPPC domain fixed under an electrode 
mounted above the water surface, taken from the work of Florsheimer.” 
The shape of the domain is stable over a period of hours. 
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Figure 2. Regularly undulating domains as characterized by a discrete 
mode, m, and relative amplitude of the undulation, e. 

We consider those shapes with m I 2 and with m = 0, the latter 
corresponding to a circular shape. The shape corresponding to 
m = 1 represents only a translation of the circular domain at small 
t, cannot be qualitatively described as a domain with a regularly 
undulating boundary, and hence will not be considered. 

For m > 0, the area of the domain is independent of the mode 
and is given by 

A = r h 2 (  1 + 0 . 5 ~ ~ )  (12) 

In the free energy calculations which follow, the area of the domain 
is fixed. Hence, we take E to be the independent variable, with 
A determined by eq 12. The radius of the circular ( m  = 0) domain 
with equivalent area is thus given by 

Ro = A[(l + 0.5~~)]’/~ (13) 

For a circular domain shape with radius &, the following results 
are easily derived: 

Io = 4rRo  In (4R0/e2d)  (15) 



888 The Journal of Physical Chemistry, Vol. 94, No. 2, 1990 Vanderlick and Mohwald 

R,: lCQd 
0.9 

f 

0 

2- 
m = l O  

0 5  
OL 

0 3: 
0 0 2  0 4  0 6  0 8  10 

Figure 3. Variaton of rm,o with relative amplitude, c.  

From eq 1, 2, and 4, the difference between the free energy 
of an undulating domain, with mode m and relative amplitude 
c, and a circular domain with the same area is given by 

(16) 

r p 2 / ~  (17)  

Here, r is a dimensionless number which relates the importance 
of electrostatic interactions to the effect of line tension. The 
competition between these two interactions, as defined by I?, 
determines the equilibrium domain shape. In all that follows, we 
report the free energy of every domain relative to that of a circular 
domain wi th  equivalent area, as defined by eq 16, in a dimen- 
sionless form obtained by dividing by RoA, where Ro is the radius 
of the circular domain. 

In  addition to regularly undulating domains, as defined by eq 
1 I ,  we also consider "mixed mode" domains whose shapes can be 
described as a linear combination of two modes. In this case 

R(0) = A,(] + t, cos (me)) + A,(I + t, cos (ne))  (18) 

(19) 

Relative Amplitude, E 

AF(m,c;A) = A[(P - Po) + )/zr(l- lo)] 

where 

The area of a such a domain is 
A = A, + A,, + 27rh,h,, 

where A, is given by eq 12 with A = A, and t = c,. We define 
X, to be the area fraction corresponding to the mth mode: 

Thus, X, ranges from zero to one, the limits corresponding to 
regularly undulating domains with modes m and n, respectively. 
At fixed domain area, we take x,, e,, and e,, to be the independent 
variables, with A,,, and A, determined from eq 19 and 20. 

Results 
We examine first the variation of the free energy of an mth 

mode regularly undulating domain with the relative amplitude 
of the undulation, t, and consequently predict the shape transition 
between a circular domain and the mth mode regularly undulating 
domain. Results are calculated for a fixed domain area, equal 
to that of a circular domain with Ro = 100d. We define I'm,o to 
be the value of r such that the free energy of the mth mode 
domain is equal to that of a circular domain with equivalent area, 
i.e., AF(m,t;A) = 0. Note from eq 16 that since P - Po 2 0 and 
I - Io 5 0, then for r > rm,o the undulating domain is more stable 
than the circular domain, i.e., AF(m,e;A) < 0. Conversely, for 
r < I'm,O, the circular domain is more stable. 

Figure 3 shows the variation of I'm,o with relative amplitude 
for modes ranging from 2 to 10. For each mode, a shape transition 
between the corresponding undulating domain and a circular 
domain exists and occurs at r equal to the minimum value of rm,o 
denoted by r*m.O; the relative amplitude corresponding to r*m,o 
is denoted by c*,,~. At r = the free energy of the mth mode 
undulating domain with relative amplitude is equal to that 
of a circular domain with equivalent area. For r > r*m.O, the 
mth mode domain has, over a range of relative amplitudes about 

a lower free energy than the circular domain. 
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Figure 4. Free energy of undulating domains (relative to that of a cir- 
cular domain with Ro = 1004 vs the relative amplitude of the undula- 
tion, e, for various modes. At this r, two distinct modes (m  = 4 and M 
= 5 )  have the lowest free energy. 
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Figure 5. Variation with r of the free energy, mode, and relative am- 
plitude of the regularly undulating domains with minimum free energy. 
The areas of the domains are fixed and equal to that of a circular domain 
with Ro = 100d. 

For all modes greater than two, > 0; thus, the predicted 
shape transitions between circular domains and these undulating 
domains are first-order, Le., discontinuous. However, for the 
second mode, t*2,0 = 0, at which point the undulating domain has 
the limiting circular shape. Thus, the shape transition between 
a circular domain and an undulating domain with m = 2 is sec- 
ond-order, in agreement with predictions by McConnell and co- 
worker~ '~  for the circular-elliptical shape transition. They showed 
analytically that this transition occurs at r = In-' [4Ro/elo/3d], 
in agreement with our numerical results. 

We have thus far examined only the possibility of a shape 
transition between a circular domain and a regularly undulating 
domain with fixed mode. It is readily noted from Figure 3 that 
I'*m,O > r*m-,,O. This means that shape transitions between 
circular domains and undulating domains with modes greater than 
two would not occur if the system were always in equilibrium. 
Hence, we now examine the equilibrium shape transitions that 
are predicted as r is continuously varied. For a given r, we search 
for the mode and corresponding relative amplitude of the regularly 
undulating domain with minimum free energy. Figure 4 shows, 
for example, the variation with relative amplitude of the free 
energy, relative to that of a circular domain, for several different 
modes at r = 0.68. Note that, in this particular case, two different 
domain shapes have the lowest free energy and can therefore 
coexist at equilibrium: one with m = 4 and t = 0.78 and one with 
m = 5 and t = 0.73. 

Figure 5 shows the variation with F of the modes and corre- 
sponding relative amplitudes of the domain shapes with the lowest 
free energy. Note that as r is increased, higher order modes 
become more stable. First-order shape transitions are predicted 
between successive modes, except for the second-order circular 
to m = 2 transition as previously described, Although i t  is not 
readily apparent from Figure 5 ,  the slope of the free energy curve 
is discontinuous at  the shape transition points between successive 
modes. Values of r at the predicted shape transitions are given 
in Table I.  
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TABLE I: Values of l' at Sbaw Transitions between Modes 
Ro = lOOd Ro = 300d Ro = 500d 

r0.z 0.376 0.266 0.234 
r2.3 0.49 I 0.319 0.274 
r3,4 0.585 0.356 0.301 
r4.5 0.680 0.390 0.325 
r5,6 0.783 0.421 0.347 
r6,7 0.898 0.452 0.367 
r7.n 1.022 0.483 0.388 
rn.9 1.173 0.514 0.407 
r9.10 1.346 0.544 0.426 

TABLE 11: Relative AmDlitudes at Shaw Transitions between Modes 
m , m +  I c*m c*m+, 

2. 3 0.71 0.63 
3, 4 0.75 0.70 
4, 5 0.78 0.73 
5, 6 0.79 0.76 
6, 7 0.80 0.77 
7, 8 0.81 0.78 
8, 9 0.8 1 0.79 
9, IO 0.82 0.80 

As is readily seen from Figure 5, over the range of r where 
a given mode is the most stable, the relative amplitude increases 
with increasing r; hence, the shapes become more elongated. This 
is consistent with the increasing importance of electrostatic in- 
teractions relative to the effect of line tension. On the other hand, 
Figure 5 also reveals that as r is increased, the relative amplitude 
of the most stable mode asymptotes to a limit, ca. 0.81. This 
implies that a regularly undulating domain with relative amplitude 
equal to one is never the most stable state, and hence, within the 
class of shapes considered, an energy barrier must be overcome 
for domain fission. 

Next, we examine the effect of area on the predicted shape 
transitions. Included in Table I are values of r at the equilibrium 
shape transitions for domains with area equal to that of a circle 
with Ro = 300d and Ro = 500d. The effect of increasing area 
is thus to shift the Occurrence of all shape transitions to lower r 
and to simultaneously decrease the range of r over which a given 
mode is the most stable. It is important to note that while the 
occurrence of each shape transition depends on r, the relative 
amplitudes at  the transition points, denoted by e*,,, and are 
independent of area. These are listed in Table 11. 

We have so far considered only regularly undulating domains, 
each characterized by a single "pure" mode. We now examine 
the possibility of mode coupling, Le., domains whose shape can 
be described as a combination of two modes, as defined by eq 18. 

First, we examine mode coupling at  the shape transition points 
between successive modes. At each transition point, we calculate 
the free energy of the mixed-mode domains formed by combining 
the two corresponding pure-mode domain shapes which can coexist 
in equilibrium. Thus, for a given domain area, we set the relative 
amplitudes equal to e*, and as given in Table 11, and vary 
the area fraction of the mth mode, x,. The variation with area 
fraction of the free energy of such mixed-mode domains is shown 
in Figure 6.  In all cases examined, the limiting pure-mode domain 
shapes have the lowest free energy, and hence there is no mode 
coupling. In addition, as higher order modes are combined, the 
free energy of the mixed-mode shape becomes increasingly greater 
than the free energy of the limiting pure-mode shapes. 

The mixed-mode analysis can be extended in the following way: 
a t  fixed area, the free energy of a mixed-mode domain is mini- 
mized with respect to both the area fraction and relative am- 
plitudes of the two modes. We examined two different mixed- 
mode combinations: shapes formed by combining the third and 
fourth modes, and shapes formed by combining the second and 
fourth modes. In both cases, the domain area was set equal to 
that of a circular domain with Ro = 100d. 

Figure 7 shows the variation with r of the free energy of the 
most stable domains formed by mixing the third and fourth modes. 
This is compared to the free energy of the most stable pure-mode 
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Figure 6. Variation with area fraction of the free energy (relative to that 
of a circular domain with Ro = 1004 of mixed-mode domains formed 
by combining successive pure-mode shapes which can coexist in equilib- 
rium. 
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Figure 7. Variation with I? of the free energy (relative to that of a 
circular domain with R,, = 1004  of the most stable mixed-mode domains 
formed by combining the third and fourth modes. 

shapes. Over the entire range of I', the 3/4 mixed-mode domains 
have free energy equal to or higher than the free energy of the 
most stable pure-mode domains, the former case Occurring only 
when the mixed-mode shape has a limiting pure-mode form, i.e., 
when x3 = 0 or 1. It is also of interest to note that, in all cases, 
the 3/4 mixed-mode domains of lowest free energy have one of 
the two relative amplitudes equal to zero (cf. eq 18). This cor- 
responds to combining a regularly undulating domain with a 
circular domain; hence, the boundaries of the 3/4 mixed-mode 
shapes with minimum free energy are themselves regularly un- 
dulating. 

Like the previous case, mixed-mode shapes formed by com- 
bining the second and fourth modes have free energy higher than 
or equal to the free energy of the most stable pure-mode shapes, 
with one exception: over a small range of r (beginning at  I'o,2), 
the most stable 2/4 mixed-mode shapes have slightly lower free 
energies than the most stable pure-mode shapes. Recall that ro,z 
corresponds to the point a t  which a circular domain undergoes 
a second-order shape transition into an m = 2 regularly undulating 
domain. As McConnell and co-workers have shown,I5 this shape 
transition point corresponds to one at which a circular shape crosses 
over to any noncircular shape. It is thus not surprising that 
different shapes can have nearly the same free energy. For ex- 
ample, from 0.376 < r < 0.413, 2/4 mixed-mode domains which 
are nearly elliptical (with t2 = 0.50, e4 = 0.20, and x2 = 0.75) 
have minimum free energy. For r > 0.413, however, the most 
stable pure-mode shapes have free energies lower than or equal 
to that of the most stable 2/4 mixed-mode shapes. 

Discussion and Conclusions 
We have investigated the possible shape transitions of domain 

shapes with regularly undulating boundaries. The equilibrium 
shapes and corresponding shape transitions are governed by a 
dimensionless number, r, which relates the importance of elec- 
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trostatic interactions to the effect of line tension. Experimentally, 
however, r is nearly constant for a given lipid system at fixed 
temperature. 

the mi- 
crostructure of the two-dimensional lipid system is typically ob- 
served along a pressure-area isotherm. In the fluid/gel coexistence 
region, the fraction of molecules in the gel phase increases as the 
total average area per molecule is decreased. As this happens, 
the gellike domains generally increase in size, rather than in 
number.1° The theoretical analysis presented in this work can 
be applied to the behavior of equilibrium shapes observed ex- 
perimentally as the area of the domains is varied. 

Recall that as the domain area is increased, the value of r at 
each predicted equilibrium shape transition decreases continuously. 
This implies that, at fixed I’, shape transitions occur as the area 
is varied, with higher order modes becoming more stable with 
increasing area. In other words, the variation with domain area 
of the mode and relative amplitude of the shape with lowest free 
energy is qualitatively similar to the variation with I?, as shown 
in Figure 4. For example, at some critical domain area, a regular 
undulating domain with mode m and relative amplitude e * ,  can 
coexist with a domain with mode m + I and relative amplitude 
e* ,+ , .  Over the range of areas where a given mode is the most 
stable, the relative amplitude increases with increasing area. 

Note that circular domains become the most stable as the area 
is decreased. This is in agreement with experimental observations 
of small domains observed just after nucleation;I0 these are 
generally circular. Based on the analysis above, the following 
shape transitions are then predicted: as the domains are further 
grown, the circular domains will become unstable and undergo 
a continuous second-order transition to an m = 2 mode domain. 
At progressively larger areas, the domain undergoes a series of 
first-order shape transitions between successive modes. The area 
corresponding to a given shape transition between two successive 
modes is, of course, a function of r. The larger the r, the smaller 
the area at each predicted shape transition. 

While higher order modes become continuously favored as the 
area is increased, the relative amplitude of the equilibrium domain 
shape asymptotes to a constant value. Thus as their sizes increase, 
the domains sprout additional protrusions while their shapes re- 
main qualitatively similar. Furthermore, a domain shape that 

By use of fluorescence film balance 
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is pinched off at the center never has the lowest free energy. 
We also investigated the possibility of mode coupling. In all 

cases examined, the free energy of mixed-mode domains formed 
by combining two successive modes was equal to or higher than 
that for regularly undulating (pure-mode) shapes. The analysis 
also revealed that the lowest free energy of mixed-mode shapes 
is in general obtained for a combination of shapes where one 
amplitude equals zero. 

We note that we have examined only one, albeit large, class 
of domain shapes: those that can be described as regularly un- 
dulating (and those formed by a linear combination of two such 
shapes). Hence, we cannot account for, nor predict, domain shapes 
and associated shape transitions that do not fall within this 
classification. On the other hand, many lipid systems form do- 
mains with shapes that are qualitatively similar to those considered. 

We also note that the calculations presented herein are strictly 
valid for systems in equilibrium and in the low-temperature limit.’4 
Experimentally, the attainment of thermodynamic equilibrium 
is quite questionable; in  fact, it has been demonstratedlo that the 
nucleation and growth of domains depend on the compression 
speed, temperature, and impurity content. Yet, with respect to 
their shape, it appears domains can reach a metastable state,15 
and within this context the analsyis presented herein may be 
applied. 

Finally, recall that the shapes and associated shape transitions 
of the dipolar lipid domains, as predicted by the free energy theory, 
are governed by a dimensionless number, r, as defined in eq 17. 
r accounts for the competition between the long-range repulsive 
electrostatic interactions and the effect of line tension. Unlike 
line tension, the excess dipole moment normal to the interface is 
experimentally accessible from surface potential measurements. 
Thus, the analysis presented here offers a means to indirectly 
measure the line tension from quantitative measurements of the 
various shapes and corresponding shape transitions that are 
predicted. This is currently one focus of experimental work in 
our laboratory and will be the subject in a forthcoming publication. 
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The reactions of H,, such as H2-D2 isotopic equilibration and exchange, reduction of catalyst by H, (noncatalytic oxidation 
of H? by a catalyst), and catalytic oxidation of H,, have been studied mostly at 573 K over 12-molybdophosphoric acid (PMoI2) 
and its Na salt. The isotopic equilibration and exchange were apparently very slow, although the uptake of H2 proceeded 
at a considerable rate. This was in marked contrast to 12-tungstophosphoric acid (PW,,) studied previously, for which the 
equilibration and exchange were very rapid, while the H2 uptake was negligible. The present results were explained by numerical 
simulation, which revealed that the accumulation of protons and subsequent formation of water from proton and polyanion 
took place nearly uniformly in the bulk of PMoi2 at a rate comparable with the H, uptake. Due to this, the rates of reduction 
and the catalytic oxidation of H2 were almost independent of their specific surface area (thus called “bulk-type catalysis, 
type 11”). 

Introduction 
Heteropoly compounds are useful catalysts in both acid and 

oxidation catalysis. In particular, 12-heteropoly compounds are 

practically used in several industrial processes.I 
In oxidation catalysis, the dynamics of the reduction-oxidation 

of catalysts is important. We have PreviouslY reported that 
heteropoly compounds have interesting reduction-oxidation 

( I )  Misono, M. Catal. Reu. 1987, 29, 269-321. and references cited 
‘Part 15: Catalysis by Heteropoly Compounds. 
*Present address: Central Research Laboratory, Nippon Oil Co., Ltd., 

Yokohama 23 I ,  Japan. therein. 
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